39 research outputs found
Mimosine Dipeptide Enantiomsers: Improved Inhibitors against Melanogenesis and Cyclooxygenase
Melanogenesis plays an important role in the protection of skin against UV through production of melanin pigments, but abnormal accumulation of this pigment causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we show for the first time that a small library of mimosine dipeptide enantiomers (Mi-L/D-amino acid) inhibit the melanogenesis in B16F10 melanoma cells by down-regulating the cellular tyrosinase with little effect on their growth or viability. Two of them, Mi-D-Trp and Mi-D-Val, turned out to be the most potent inhibitors on melanin content and cellular tyrosinase in B16F10 melanoma cells. In addition, most of the mimosine dipeptides were more potent than mimosine for inhibiting cyclooxygenase 1 (COX-1) with IC50 of 18–26 μM. Among them, Mi-L-Val and Mi-L-Trp inhibited cyclooxygenase 2 (COX-2) more potently than indomethacin, with IC50 values of 22 and 19 μM, respectively. Taken together, our results suggest the possibility that mimosine dipeptides could be better candidates (than mimosine) for anti-melanogenic (skin hyperpigmentation treatment) and cyclooxygenase (COX) inhibition
Anti-Oxidant, Anti-Aging, and Anti-Melanogenic Properties of the Essential Oils from Two Varieties of Alpinia zerumbet
Here, we investigated the anti-oxidant and anti-aging effects of essential oils (EOs) from the leaves of Alpinia zerumbet (tairin and shima) in vitro and anti-melanogenic effects in B16F10 melanoma cells. The anti-oxidant activities were performed with 2,2-diphenyl-1-picrylhydrazyl (DPPH); 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS); nitric oxide; singlet oxygen; hydroxyl radical scavenging; and xanthine oxidase. The inhibitory activities against collagenase, elastase, hyaluronidase, and tyrosinase were employed for anti-aging. The anti-melanogenic was assessed in B16F10 melanoma cells by melanin synthesis and intracellular tyrosinase inhibitory activity. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The EO was a complex mixture mainly consisting of monoterpenes and sesquiterpenes. The results revealed that tairin and shima EOs showed strong anti-oxidant activities against DPPH and nitric oxide, hydroxyl radical scavenging activity, and xanthine oxidase inhibition. Compared to shima EO; tairin EO exhibited strong anti-aging activity by inhibiting collagenase, tyrosinase, hyaluronidase, and elastase (IC50 = 11 ± 0.1; 25 ± 1.2; 83 ± 1.6; and 213 ± 2 μg/mL, respectively). Both EOs inhibited intracellular tyrosinase activity; thus, reducing melanin synthesis. These results suggest that tairin EO has better anti-oxidant/anti-aging activity than shima EO, but both are equally anti-melanogenic
Anti-Obesity Effects of Hispidin and Alpinia zerumbet Bioactives in 3T3-L1 Adipocytes
Obesity and its related disorders have become leading metabolic diseases. In the present study, we used 3T3-L1 adipocytes to investigate the anti-obesity activity of hispidin and two related compounds that were isolated from Alpinia zerumbet (alpinia) rhizomes. The results showed that hispidin, dihydro-5,6-dehydrokawain (DDK), and 5,6-dehydrokawain (DK) have promising anti-obesity properties. In particular, all three compounds significantly increased intracellular cyclic adenosine monophosphate (cAMP) concentrations by 81.2% ± 0.06%, 67.0% ± 1.62%, and 56.9% ± 0.19%, respectively. Hispidin also stimulated glycerol release by 276.4% ± 0.8% and inhibited lipid accumulation by 47.8% ± 0.16%. Hispidin and DDK decreased intracellular triglyceride content by 79.5% ± 1.37% and 70.2% ± 1.4%, respectively, and all three compounds inhibited glycerol-3-phosphate dehydrogenase (GPDH) and pancreatic lipase, with hispidin and DDK being the most potent inhibitors. Finally, none of the three compounds reduced 3T3-L1 adipocyte viability. These results highlight the potential for developing hispidin and its derivatives as anti-obesity compounds