170 research outputs found
Hemopoietic Colony-forming Cells in Umbilical Cord Blood with Extensive Capability to Generate Mono- and Multipotential Hemopoietic Progenitors
We report identification of a unique class of human hemopoietic colony-forming cells with extensive ability to generate progenitors for secondary colonies. Mononuclear cells isolated from human umbilical cord blood formed colonies consisting of 40-500 blast cells after 25 d of incubation in methylcellulose culture in the presence of erythropoietin and medium conditioned by phytohemagglutinin-stimulated leukocytes. Replating of these blast cell colonies revealed that 100% of the primary colonies had the ability to generate secondary colonies, including multipotential colonies. These colonies could be distinguished from other hemopoietic colonies in situ by the complete absence of signs of terminal differentiation. Replating of granulocyte-erythrocyte-macrophage-megakaryocyte (GEMM) colonies, consisting of an average of 2 X 10^4 cells, revealed less capacity for secondary colony formation. This human blast cell colony assay may provide a method for quantitation of more primitive hemopoietic stem cells than progenitors for GEMM colonies (CFU-GEMM) in man
SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis
脊髄性筋萎縮症における骨格筋病変の発症メカニズムの一部を解明. 京都大学プレスリリース. 2023-01-17.Pathogenesis of skeletal muscle lesions in spinal muscular atrophy. 京都大学プレスリリース. 2023-02-17.Spinal muscular atrophy (SMA) is a congenital neuromuscular disease caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although the primary cause of progressive muscle atrophy in SMA has classically been considered the degeneration of motor neurons, recent studies have indicated a skeletal muscle–specific pathological phenotype such as impaired mitochondrial function and enhanced cell death. Here, we found that the down-regulation of SMN causes mitochondrial dysfunction and subsequent cell death in in vitro models of skeletal myogenesis with both a murine C2C12 cell line and human induced pluripotent stem cells. During myogenesis, SMN binds to the upstream genomic regions of MYOD1 and microRNA (miR)-1 and miR-206. Accordingly, the loss of SMN down-regulates these miRs, whereas supplementation of the miRs recovers the mitochondrial function, cell survival, and myotube formation of SMN-deficient C2C12, indicating the SMN-miR axis is essential for myogenic metabolic maturation. In addition, the introduction of the miRs into ex vivo muscle stem cells derived from Δ7-SMA mice caused myotube formation and muscle contraction. In conclusion, our data revealed novel transcriptional roles of SMN during myogenesis, providing an alternative muscle-oriented therapeutic strategy for SMA patients
Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t(8;21) acute myeloid leukemia
One of the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML) is t(8;21). Although patients with t(8;21) AML have a more favorable prognosis than other cytogenetic subgroups, relapse is still common and novel therapeutic approaches are needed. A recent study showed that t(8;21) AML is characterized by CCND2 deregulation and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells. In this study, we examined the in vivo effects of co-inhibiting CDK4/6 and autophagy. We used a mouse model in which t(8;21)-positive Kasumi-1 cells were subcutaneously inoculated into NOD/Shi-scid IL2Rgnull mice. The mice were treated with the autophagy inhibitor chloroquine (CQ), a CDK4/6 inhibitor (either abemaciclib or palbociclib), or a CDK4/6 inhibitor plus CQ. After 20 days of treatment, tumor volume was measured, and immunostaining and transmission electron microscopy observations were performed. There was no change in tumor growth in CQ-treated mice. However, mice treated with a CDK4/6 inhibitor plus CQ had significantly less tumor growth than mice treated with a CDK4/6 inhibitor alone. CDK4/6 inhibitor treatment increased the formation of autophagosomes. The number of single-strand DNA-positive (apoptotic) cells was significantly higher in the tumors of mice treated with a CDK4/6 inhibitor plus CQ than in mice treated with either CQ or a CDK4/6 inhibitor. These results show that CDK4/6 inhibition induces autophagy, and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells in vivo. The results suggest that inhibiting CDK4/6 and autophagy could be a novel and promising therapeutic strategy in t(8;21) AML
A Novel Serum-Free Monolayer Culture for Orderly Hematopoietic Differentiation of Human Pluripotent Cells via Mesodermal Progenitors
Elucidating the in vitro differentiation of human embryonic stem (ES) and induced pluripotent stem (iPS) cells is important for understanding both normal and pathological hematopoietic development in vivo. For this purpose, a robust and simple hematopoietic differentiation system that can faithfully trace in vivo hematopoiesis is necessary. In this study, we established a novel serum-free monolayer culture that can trace the in vivo hematopoietic pathway from ES/iPS cells to functional definitive blood cells via mesodermal progenitors. Stepwise tuning of exogenous cytokine cocktails induced the hematopoietic mesodermal progenitors via primitive streak cells. These progenitors were then differentiated into various cell lineages depending on the hematopoietic cytokines present. Moreover, single cell deposition assay revealed that common bipotential hemoangiogenic progenitors were induced in our culture. Our system provides a new, robust, and simple method for investigating the mechanisms of mesodermal and hematopoietic differentiation
N-Acetylcysteine prevents amyloid-β secretion in neurons derived from human pluripotent stem cells with trisomy 21
ダウン症患者さん由来の神経細胞からのアミロイドβ分泌は抗酸化剤で抑止される. 京都大学プレスリリース. 2021-08-31.Stopping dementia in Down syndrome patients. 京都大学プレスリリース. 2021-08-31.Down syndrome (DS) is caused by the trisomy of chromosome 21. Among the many disabilities found in individuals with DS is an increased risk of early-onset Alzheimer's disease (AD). Although higher oxidative stress and an upregulation of amyloid β (Aβ) peptides from an extra copy of the APP gene are attributed to the AD susceptibility, the relationship between the two factors is unclear. To address this issue, we established an in vitro cellular model using neurons differentiated from DS patient-derived induced pluripotent stem cells (iPSCs) and isogenic euploid iPSCs. Neurons differentiated from DS patient-derived iPSCs secreted more Aβ compared to those differentiated from the euploid iPSCs. Treatment of the neurons with an antioxidant, N-acetylcysteine, significantly suppressed the Aβ secretion. These findings suggest that oxidative stress has an important role in controlling the Aβ level in neurons differentiated from DS patient-derived iPSCs and that N-acetylcysteine can be a potential therapeutic option to ameliorate the Aβ secretion
Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors
GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34⁺CD45⁺CD90⁺CD38⁻ HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs
The first Japanese biobank of patient‐derived pediatric acute lymphoblastic leukemia xenograft models
A lack of practical resources in Japan has limited preclinical discovery and testing of therapies for pediatric relapsed and refractory acute lymphoblastic leukemia (ALL), which has poor outcomes. Here, we established 57 patient-derived xenografts (PDXs) in NOD.Cg-Prkdcscidll2rgtm1Sug/ShiJic (NOG) mice and created a biobank by preserving PDX cells including three extramedullary relapsed ALL PDXs. We demonstrated that our PDX mice and PDX cells mimicked the biological features of relapsed ALL and that PDX models reproduced treatment-mediated clonal selection. Our PDX biobank is a useful scientific resource for capturing drug sensitivity features of pediatric patients with ALL, providing an essential tool for the development of targeted therapies
Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors
GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34+CD45+CD90+CD38– HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs
RUNX inhibitor suppresses graft‐versus‐host disease through targeting RUNX‐NFATC2 axis
Patients with refractory graft-versus-host disease (GVHD) have a dismal prognosis. Therefore, novel therapeutic targets are still needed to be identified. Runt-related transcriptional factor (RUNX) family transcription factors are essential transcription factors that mediate the essential roles in effector T cells. However, whether RUNX targeting can suppress, and GVHD is yet unknown. Here, we showed that RUNX family members have a redundant role in directly transactivating NFATC2 expression in T cells. We also found that our novel RUNX inhibitor, Chb-M’, which is the inhibitor that switches off the entire RUNX family by alkylating agent–conjugated pyrrole-imidazole (PI) polyamides, inhibited T-cell receptor mediated T cell proliferation and allogenic T cell response. These were designed to specifically bind to consensus RUNX-binding sequences (TGTGGT). Chb-M’ also suppressed the expression of NFATC2 and pro-inflammatory cytokine genes in vitro. Using xenogeneic GVHD model, mice injected by Chb-M’ showed almost no sign of GVHD. Especially, the CD4 T cell was decreased and GVHD-associated cytokines including tissue necrosis factor-α and granulocyte-macrophage colony-stimulating factor were reduced in the peripheral blood of Chb-M’ injected mice. Taken together, our data demonstrates that RUNX family transcriptionally upregulates NFATC2 in T cells, and RUNX-NFATC2 axis can be a novel therapeutic target against GVHD
- …