4,671 research outputs found
Reconstruction And Identification Of Heavy Long-Lived Particles At The ATLAS Detector At The LHC
Long-lived charged particles are predicted by many models of physics beyond the Standard Model (SM). At the LHC, the common signature would be a heavy long-lived charged particle with velocity smaller than the speed of light, <1. This paper presents methods we developed for identifying slow particles and measuring their mass using the ATLAS muon spectrometer. The efficacy of these methods is demonstrated using two different models
LEP measurements of V and V
The magnitude of the CKM matrix element V/sub cb/ has been measured using B/sup 0/ to D*/sup +/l/sup -/ nu decays recorded on the Z/sup 0 / peak using the OPAL, ALEPH and DELPHI detectors at LEP. The D*/sup +/ to D/sup 0/ pi /sup +/ decays were reconstructed both in particular decay modes and via an inclusive technique. The product of V/sub cb/and the decay form factor of the B/sup 0/ to D*/sup +/l /sup -/ nu transition at zero recoil F(1) was measured to be F(1) V /sub cb/=(35.6+or-1.7)*10/sup -3/. V/sub cb/ is obtained by using Heavy Quark Effective Theory calculations for F(1). The semi-leptonic branching ratio BR(b to cl nu ) is also used to extract V/sub cb/. The combined result is V/sub cb/=(40.7+or-1.9)*10/sup -3/. The semi-leptonic branching ratio BR(b to ul nu ) is measured and used to extract the magnitude of V/sub ub/, V/sub ub/=(4.09/sub -0.69//sup +0.59/)*10/sup -3/. (12 refs)
The Thin Gap Chambers database experience in test beam and preparations for ATLAS
Thin gap chambers (TGCs) are used for the muon trigger system in the forward
region of the LHC experiment ATLAS. The TGCs are expected to provide a trigger
signal within 25 ns of the bunch spacing. An extensive system test of the ATLAS
muon spectrometer has been performed in the H8 beam line at the CERN SPS during
the last few years. A relational database was used for storing the conditions
of the tests as well as the configuration of the system. This database has
provided the detector control system with the information needed for
configuration of the front end electronics. The database is used to assist the
online operation and maintenance. The same database is used to store the non
event condition and configuration parameters needed later for the offline
reconstruction software. A larger scale of the database has been produced to
support the whole TGC system. It integrates all the production, QA tests and
assembly information. A 1/12th model of the whole TGC system is currently in
use for testing the performance of this database in configuring and tracking
the condition of the system. A prototype of the database was first implemented
during the H8 test beams. This paper describes the database structure, its
interface to other systems and its operational performance.Comment: Proceedings IEEE, Nuclear Science Symposium 2005, Stockholm, Sweeden,
May 200
Trigger and Reconstruction for a heavy long lived charged particles with the ATLAS detector
Long lived charged particles are predicted by many models of physics beyond the standard model (SM). The common signature of such models is a heavy long-lived charged particle with velocity smaller than the speed of light, beta<1. This unique signature makes the search for it model independent. This paper presents methods developed as part of the ATLAS trigger and reconstruction chain for identifying slow particles and measuring their mass. The efficacy of these methods is demonstrated using two models that are different in every aspect except for the existence of long lived charged particles; A GMSB model that includes sleptons with a mass of 100 GeV, and R-Hadrons with a mass of 300 GeV produced in a split SUSY model
Design, prototyping and testing of the detector control system for the ATLAS endcap muon trigger
Trigger Selection Software for Beauty Physics in ATLAS
The unprecedented rate of beauty production at the LHC will yield high statistics for measurements such as CP violation and Bs oscillation and will provide the opportunity to search for and study very rare decays, such as Bâ ïï .The trigger is a vital component for this work and must select events containing the channels of interest from a huge background in order to reduce the 40 MHz bunch crossing rate down to 100-200 Hz for recording, of which only a part will be assigned to B-physics. Requiring a single or di-muon trigger provides the first stage of the B-trigger selection. Track reconstruction is then performed in the Inner Detector, either using the full detector, at initial luminosity, or within Regions of Interest identified by the first level trigger at higher luminosities. Based on invariant mass, combinations of tracks are selected as likely decay products of the channel of interest and secondary vertex fits are performed. Events are selected based on properties such as fit quality and invariant mass. We present fast vertex reconstruction algorithms suitable for use in the second level trigger and event filter (level three). We discuss the selection software and the flexible trigger strategies that will enable ATLAS to pursue a B-physics programme from the first running at a luminosity of about 1031 cm-2s-1 through to the design luminosity running at 1034 cm-2s-1
Probing High Reheating Temperature Scenarios at the LHC with Long-Lived Staus
We investigate the possibility of probing high reheating temperature
scenarios at the LHC, in supersymmetric models where the gravitino is the
lightest supersymmetric particle, and the stau is the next-to-lightest
supersymmetric particle. In such scenarios, the big-bang nucleosynthesis and
the gravitino abundance give a severe upper bound on the gluino mass. We find
that, if the reheating temperature is \sim 10^8 GeV or higher, the scenarios
can be tested at the LHC with an integrated luminosity of O(1 fb^{-1}) at
\sqrt{s}=7 TeV in most of the parameter space.Comment: 17 pages, 5 figures, minor modification
System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS
An extensive system test of the ATLAS muon spectrometer has been performed in
the H8 beam line at the CERN SPS during the last four years. This spectrometer
will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip
Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for
triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the
end-cap region. The test set-up emulates one projective tower of the barrel
(six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC
and three TGCs). The barrel and end-cap stands have also been equipped with
optical alignment systems, aiming at a relative positioning of the precision
chambers in each tower to 30-40 micrometers. In addition to the performance of
the detectors and the alignment scheme, many other systems aspects of the ATLAS
muon spectrometer have been tested and validated with this setup, such as the
mechanical detector integration and installation, the detector control system,
the data acquisition, high level trigger software and off-line event
reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have
allowed measuring the trigger and tracking performance of this set-up, in a
configuration very similar to the final spectrometer. A special bunched muon
beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used
to study the timing resolution and bunch identification performance of the
trigger chambers. The ATLAS first-level trigger chain has been operated with
muon trigger signals for the first time
- …