49 research outputs found

    Current in a Spin-orbit-coupling System

    Full text link
    The formulae of particle current as well as spin- and angular momentum currents are studied for most spin-orbit coupling (SOC) systems. It is shown that the conventional expression of currents in some literatures are not complete for some SOC systems. The particle current in Dresselhaus system must have extra terms in additional to the conventional one, but no extra term for Rashba, Luttinger model. Further more, we also prove that the extra terms of total angular momentum appear in Rashba current in addition to conventional one.Comment: 26 page

    Rapid algorithm for identifying backbones in the two-dimensional percolation model

    Full text link
    We present a rapid algorithm for identifying the current-carrying backbone in the percolation model. It applies to general two-dimensional graphs with open boundary conditions. Complemented by the modified Hoshen-Kopelman cluster labeling algorithm, our algorithm identifies dangling parts using their local properties. For planar graphs, it finds the backbone almost four times as fast as Tarjan's depth-first-search algorithm, and uses the memory of the same size as the modified Hoshen-Kopelman algorithm. Comparison with other algorithms for backbone identification is addressed.Comment: 5 pages with 5 eps figures. RevTeX 3.1. Clarify the origin of the hull-generating algorith

    Quantum model for magnetic multivalued recording in coupled multilayers

    Full text link
    In this paper, we discuss the possibilities of realizing the magnetic multi-valued (MMV) recording in a magnetic coupled multilayer. The hysteresis loop of a double-layer system is studied analytically, and the conditions for achieving the MMV recording are given. The conditions are studied from different respects, and the phase diagrams for the anisotropic parameters are given in the end.Comment: 8 pages, LaTex formatted, 7 figures (those who are interested please contact the authors requring the figures) Submitted to Physal Review B. Email: [email protected]

    Coherent transport of armchair graphene constrictions

    Full text link
    The coherent transport properties of armchair graphene nanoconstrictions(GNC) are studied using tight-binding approach and Green's function method. We find a non-bonding state at zero Fermi energy which results in a zero conductance valley, when a single vacancy locates at y=3n±1y=3n\pm 1 of a perfect metallic armchair graphene nanoribbon(aGNR). However, the non-bonding state doesn't exist when a vacancy locates at y=3n, and the conductance behavior of lowest conducting channel will not be affected by the vacancy. For the square-shaped armchair GNC consisting of three metallic aGNR segments, resonant tunneling behavior is observed in the single channel energy region. We find that the presence of localized edge state locating at the zigzag boundary can affect the resonant tunneling severely. A simplified one dimensional model is put forward at last, which explains the resonant tunneling behavior of armchair GNC very well.Comment: 6 pages, 11 figure

    Improved transfer matrix method without numerical instability

    Full text link
    A new improved transfer matrix method (TMM) is presented. It is shown that the method not only overcomes the numerical instability found in the original TMM, but also greatly improves the scalability of computation. The new improved TMM has no extra cost of computing time as the length of homogeneous scattering region becomes large. The comparison between the scattering matrix method(SMM) and our new TMM is given. It clearly shows that our new method is much faster than SMM.Comment: 5 pages,3 figure

    Influences of spin accumulation on the intrinsic spin Hall effect in two dimensional electron gases with Rashba spin-orbit coupling

    Get PDF
    In a two dimensional electron gas with Rashba spin-orbit coupling, the external electric field may cause a spin Hall current in the direction perpendicular to the electric field. This effect was called the intrinsic spin Hall effect. In this paper, we investigate the influences of spin accumulation on this intrinsic spin Hall effect. We show that due to the existence of boundaries in a real sample, the spin Hall current generated by the intrinsic spin Hall effect will cause spin accumulation near the edges of the sample, and in the presence of spin accumulation, the spin Hall conductivity will not have a universal value. The influences of spin accumulation on the intrinsic spin Hall effect in narrow strips of two dimensional electron gases with Rashba spin-orbit coupling are investigated in detail.Comment: 7 pages, 2 figure

    A quantum model for the magnetic multi-valued recording

    Full text link
    We have proposed a quantum model for the magnetic multi-valued recording in this paper. The hysteresis loops of the two-dimensional systems with randomly distributed magnetic atoms have been studied by the quantum theory developed previously. The method has been proved to be exact in this case. We find that the single-ion anisotropies and the densities of the magnetic atoms are mainly responsible for the hysterisis loops. Only if the magnetic atoms contained by the systems are of different (not uniform) anistropies and their density is low, there may be more sharp steps in the hysteresis loops. Such materials can be used as the recording media for the so-called magnetic multi-valued recording. Our result explained the experimental results qualitativly.Comment: 10 pages containing one Table. Latex formatted. 5 figures: those who are interested please contact the authors requiring the figures. Submitted to J. Magn. Magn. Mater. . Email address: [email protected]
    corecore