8,245 research outputs found
Development of low cost contacts to silicon solar cells
A copper based contact system using plated Pd-Cr-Cu was developed. Good cells were made but cells degraded under low temperature (300 C) heat treatments. The degradation was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. An electroless nickel solution was substituted for the electroless chromium solution in the original process
Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1
Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance
Improved calibration of the radii of cool stars based on 3D simulations of convection: implications for the solar model
Main sequence, solar-like stars (M < 1.5 Msun) have outer convective
envelopes that are sufficiently thick to affect significantly their overall
structure. The radii of these stars, in particular, are sensitive to the
details of inefficient, super-adiabatic convection occurring in their outermost
layers. The standard treatment of convection in stellar evolution models, based
on the Mixing-Length Theory (MLT), provides only a very approximate description
of convection in the super-adiabatic regime. Moreover, it contains a free
parameter, alpha_MLT, whose standard calibration is based on the Sun, and is
routinely applied to other stars ignoring the differences in their global
parameters (e.g., effective temperature, gravity, chemical composition) and
previous evolutionary history. In this paper, we present a calibration of
alpha_MLT based on three-dimensional radiation-hydrodynamics (3D RHD)
simulations of convection. The value of alpha_MLT is adjusted to match the
specific entropy in the deep, adiabatic layers of the convective envelope to
the corresponding value obtained from the 3D RHD simulations, as a function of
the position of the star in the (log g, log T_eff) plane and its chemical
composition. We have constructed a model of the present-day Sun using such
entropy-based calibration. We find that its past luminosity evolution is not
affected by the entropy calibration. The predicted solar radius, however,
exceeds that of the standard model during the past several billion years,
resulting in a lower surface temperature. This illustrative calculation also
demonstrates the viability of the entropy approach for calibrating the radii of
other late-type stars.Comment: 16 pages, 14 figures, accepted for publication in the Astrophysical
Journa
Development of low cost contacts to silicon solar cells
The results of the second phase of the program of developing low cost contacts to silicon solar cells using copper are presented. Phase 1 yielded the development of a plated Pd-Cr-Cu contact system. This process produced cells with shunting problems when they were heated to 400 C for 5 minutes. Means of stopping the identified copper diffusion which caused the shunting were investigated. A contact heat treatment study was conducted with Pd-Ag, Ci-Ag, Pd-Cu, Cu-Cr, and Ci-Ni-Cu. Nickel is shown to be an effective diffusion barrier to copper
Regular quantum graphs
We introduce the concept of regular quantum graphs and construct connected
quantum graphs with discrete symmetries. The method is based on a decomposition
of the quantum propagator in terms of permutation matrices which control the
way incoming and outgoing channels at vertex scattering processes are
connected. Symmetry properties of the quantum graph as well as its spectral
statistics depend on the particular choice of permutation matrices, also called
connectivity matrices, and can now be easily controlled. The method may find
applications in the study of quantum random walks networks and may also prove
to be useful in analysing universality in spectral statistics.Comment: 12 pages, 3 figure
Engage D3.5 Opportunities for innovative ATM research (interim report)
This document reports on the topics and academic disciplines of past Exploratory Research projects, notably SESAR Workpackage E (long-term and innovative research) and SESAR Exploratory Research (ER) with a view of tracing the evolution of research as well as opportunities for future research. This analysis is complemented with relevant activities in Engage, such as the Engage thematic challenges
On the edge of a new frontier: Is gerontological social work in the UK ready to meet twenty-first-century challenges?
This article is available open access through the publisher’s website. Copyright @ 2013 The Authors.This article explores the readiness of gerontological social work in the UK for meeting the challenges of an ageing society by investigating the focus on work with older people in social work education and the scope of gerontological social work research. The discussion draws on findings from two exploratory studies: a survey of qualifying master's programmes in England and a survey of the content relating to older people over a six-year period in four leading UK social work journals. The evidence from master's programmes suggests widespread neglect of ageing in teaching content and practice learning. Social work journals present a more nuanced picture. Older people emerge within coverage of generic policy issues for adults, such as personalisation and safeguarding, and there is good evidence of the complexity of need in late life. However, there is little attention to effective social work interventions, with an increasingly diverse older population, or to the quality of gerontological social work education. The case is made for infusing content on older people throughout the social work curriculum, for extending practice learning opportunities in social work with older people and for increasing the volume and reporting of gerontological social work research.Brunel Institute for Ageing Studie
Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space
Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity
Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere
Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones
- …