873 research outputs found
Deep Residual Learning for Small-Footprint Keyword Spotting
We explore the application of deep residual learning and dilated convolutions
to the keyword spotting task, using the recently-released Google Speech
Commands Dataset as our benchmark. Our best residual network (ResNet)
implementation significantly outperforms Google's previous convolutional neural
networks in terms of accuracy. By varying model depth and width, we can achieve
compact models that also outperform previous small-footprint variants. To our
knowledge, we are the first to examine these approaches for keyword spotting,
and our results establish an open-source state-of-the-art reference to support
the development of future speech-based interfaces.Comment: Published in ICASSP 201
- …