441 research outputs found


    Get PDF
    The low-temperature sintered (ZnMg)2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS) as a sintering aid has been developed. Microwave properties of (Zn1-xMgx)2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg)2SiO4 (ZMS) ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf) of ZMS system to a near zero value. (Zn0.8Mg0.2)2SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C

    Promotion of tumor development in prostate cancer by progerin

    Get PDF
    Progerin is a truncated form of lamin A. It is identified in patients with Hutchinson-Gilford progeria syndrome (HGPS), a disease characterized by accelerated aging. The contribution of progerin toward aging has been shown to be related to increased DNA damages. Since aging is one major risk factor for carcinogenesis, and genomic instability is a hallmark of malignant cancers, we investigated the expression of progerin in human cancer cells, and whether its expression contributes to carcinogenesis. Using RT-PCR and Western blotting, we detected the expression of progerin in prostate PC-3, DU145 and LNCaP cells at mRNA and protein levels. Ectopic progerin expression did not cause cellular senescence in PC-3 or MCF7 cells. PC-3 cells progerin transfectants were sensitized to DNA damage agent camptothecin (CPT); and persistent DNA damage responses were observed, which might be caused by progerin induced defective DNA damage repair. In addition, progerin transfectants were more tumorigenic in vivo than vector control cells. Our study for the first time describes the expression of progerin in a number of human cancer cell lines and its contributory role in tumorigenesis

    Myricetin promotes peripheral nerve regeneration in rat model of sciatic nerve injury via regulation of BDNFAkt/ GSK-3β/mTOR signalling pathway

    Get PDF
    Purpose: To investigate the effects of myricetin on peripheral nerve regeneration in sciatic nerve crush injury model.Methods: Separate groups of rats were administered myricetin at 25, 50 or 100 mg/kg body weight/day for 2 weeks. Functional recovery following sciatic nerve injury was assessed by foot position and walking track analyses, measurement of mechanical hyperalgesia, and withdrawal reflex latency (WRL).Results: Myricetin treatment resulted in significantly enhanced recovery of sensorimotor functions as evidenced by increased scores in functional analysis tests. Myricetin treatment remarkably elevated brain derived neurotrophic factor (BDNF) expression, and also enhanced activation of Akt and mTORc1, reflecting up-regulation of PI3K/Akt/mTORC1 signalling involved in nerve regeneration.Conclusion: Myricetin enhances functional recovery and nerve regeneration in rats. These findings suggest that myricetin is a potent neuroprotective agent with potential for the management of peripheral nerve injury.Keywords: Glycogen synthase kinase 3β, Mammalian target of rapamycin (mTOR), Myricetin, Nerve regeneratio

    Accelerated phosphorus accumulation and acidification of soils under plastic greenhouse condition in four representative organic vegetable cultivation sites

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by for personal use, not for redistribution. The definitive version was published in Scientia Horticulturae 195 (2015): 67-83, doi:10.1016/j.scienta.2015.08.041.Organic vegetable cultivation under plastic greenhouse conditions is expanding rapidly in the suburb of big cities in China due to the increasing demand for organic, out-of-season green vegetables and the sustainable development of agriculture. Phosphorus (P) is not only an important plant nutrient, but also a major contaminant in the water environment. However, information on the accumulation and distribution of P in organic vegetable soils under plastic greenhouse conditions is limited, relative to the open cultivation systems. Therefore, twenty-six plastic greenhouse vegetable soils (PGVS) were selected randomly from four representative organic vegetable cultivation sites located in the suburb of Nanjing, China. For comparison, 15 open vegetable soils (OVS) near the PGVS with similar soil and cultivation practices were selected. Soil pH, organic matter (OM) and the various P accumulation characteristics were investigated. We found that soil pH in PGVS were significantly decreased by 0.57~1.17 unit with obvious signs of acidification, compared with that in OVS. Soil OM was different for different sampling locations, but in general it was higher in PGVS than OVS. Soil total P (TP), inorganic P (Pi) and Olsen-P of PGVS were higher than those in the OVS. Olsen-P of all soil samples were far above the recommended optimum value of 20 mg kg-1 for field crops, and over 60% soil samples were considered excessive (>150 mg kg-1 ) in the PGVS and OVS. There were significant correlations between total P, available P and soil pH in those vegetable soils. Al-P/Fe-P ratio was also significantly correlated with vegetable soil pH (YpH = 7.44 - 1.32 XAl-P/Fe-P, r = - 0.705, p < 0.01). Soil total Pi was negatively correlated with soil pH in vegetable soils (r = -0.328, p < 0.05), but the interactive effect of soil various Pi and soil pH need to be further investigated through a series of controlled tests. Our results suggest that the rapid P accumulation and acidification make the current plastic greenhouse vegetable production in the study area unsustainable and better organic manure management practices need to be implemented to sustain crop yields while minimizing the impact of vegetable production on the environment.This work was supported by the National Natural Science Foundation, China (grant no. 41571286; 51479055); Open Research Fund Program of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China (grant no.Y412201419); and the Fund of Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents

    Carboxymethyl chitosan-folic acid-conjugated Fe3O4@SiO2 as a safe and targeting antitumor nanovehicle in vitro

    Get PDF
    A synthetic method to prepare a core-shell-structured Fe(3)O(4)@SiO(2) as a safe nanovehicle for tumor cell targeting has been developed. Superparamagnetic iron oxide is encapsulated inside nonporous silica as the core to provide magnetic targeting. Carboxymethyl chitosan-folic acid (OCMCS-FA) synthesized through coupling folic acid (FA) with OCMCS is then covalently linked to the silica shell and renders new and improved functions because of the original biocompatible properties of OCMCS and the targeting efficacy of FA. Cellular uptake of the nanovehicle was assayed by confocal laser scanning microscope using rhodamine B (RB) as a fluorescent marker in HeLa cells. The results show that the surface modification of the core-shell silica nanovehicle with OCMCS-FA enhances the internalization of nanovehicle to HeLa cells which over-express the folate receptor. The cell viability assay demonstrated that Fe(3)O(4)@SiO(2)-OCMCS-FA nanovehicle has low toxicity and can be used as an eligible candidate for drug delivery system. These unique advantages make the prepared core-shell nanovehicle promising for cancer-specific targeting and therapy

    Expression, Purification and Activity Analysis of Proteus vulgaris Phage Lys66

    Get PDF
    Objective: The gene cloning, protein expression, purification and activity analysis of a new type of Proteus vulgaris bacteriophage lyase Lys66 were performed. Methods: The whole gene sequence of bacteriophage was compared in the Genbank database. The gene sequence of lysase was excavated and cloned. The protein was expressed in Escherichia coli and was further purified to explore its antibacterial effect. Results: A gene sequence with high similarity to lyase was discovered through comparison, with a size of 393 bp. By using ExPAsy Bioinformatics Resource Portal, the lyase was predicted that its molecular weight was 15.20 kDa, the isoelectric point was 9.40, and it was composed of 130 amino acids. The whole optimized synthetic gene was constructed onto vector pET-32α to obtain the recombinant plasmid pET-32α-Lys66. The recombinant plasmid was transferred into competent cells of E. coli BL21 (DE3) to induce its expression. After purification and validation, 1.86 mg/mL Lys66 protein was obtained. The diameter of the bacteriostatic ring of Lys66 lyase on the plate was 19.30 mm. Thirteen Gram-negative bacteria out of 15 tested strains treated with chloroform showed lytic activity, with a wide host spectrum. When Lys66 (1.89 mg/mL) was used in combination with ethylene diamine tetraacetic acid (1 mmol/L), the OD600 nm decreased by 0.61 after 2 h, indicating a good antibacterial effect. Conclusion: The recombinant lysase Lys66 expressed in this study had good antibacterial effects and could be used as a potential antibacterial agent

    Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1

    Full text link
    Abstract The primary cilium is a microtubule-based sensory organelle. The molecular mechanism that regulates ciliary dynamics remains elusive. Here, we report an unexpected finding that MLN4924, a small molecule inhibitor of NEDD8-activating enzyme (NAE), blocks primary ciliary formation by inhibiting synthesis/assembly and promoting disassembly. This is mainly mediated by MLN4924-induced phosphorylation of AKT1 at Ser473 under serum-starved, ciliary-promoting conditions. Indeed, pharmaceutical inhibition (by MK2206) or genetic depletion (via siRNA) of AKT1 rescues MLN4924 effect, indicating its causal role. Interestingly, pAKT1-Ser473 activity regulates both ciliary synthesis/assembly and disassembly in a MLN4924 dependent manner, whereas pAKT-Thr308 determines the ciliary length in MLN4924-independent but VHL-dependent manner. Finally, MLN4924 inhibits mouse hair regrowth, a process requires ciliogenesis. Collectively, our study demonstrates an unexpected role of a neddylation inhibitor in regulation of ciliogenesis via AKT1, and provides a proof-of-concept for potential utility of MLN4924 in the treatment of human diseases associated with abnormal ciliogenesis.https://deepblue.lib.umich.edu/bitstream/2027.42/148214/1/13238_2019_Article_614.pd

    Advanced architecture designs towards high-performance 3D microbatteries

    Get PDF
    Rechargeable microbatteries are important power supplies for microelectronic devices. Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas. In addition to the development of new high-performance electrode materials, the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area. To make a clear vision on the design principle of rechargeable microbatteries, we firstly summarize the typical configurations of microbatteries. The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering. Towards the high energy output at a minimal footprint area, a revolutionary design for microbatteries is of great importance. In this perspective, we review the progress of fabricating microbatteries based on the rolled-up nanotechnology, a derivative origami technology. Finally, we discussed the challenges and perspectives in the device design and materials optimization

    Experimental analysis on physical and mechanical properties of thermal shock damage of granite

    Get PDF
    The purpose of this study was to explore the changes of mechanical and physical properties of granite under different thermal loading effects. Uniaxial compression experiments studying the rules of the influence of temperature load on mechanical properties of granite were carried out. After high-temperature heating at above 600 °C, granite tended to have stronger ductility and plasticity as well as declined peak stress and compressive strength. Thermogravimetry - differential scanning calorimetry (TG-DSC) analysis results showed that, thermal load at different temperatures induced reactions such as water loss, oxidation and crystallization in the microstructure of granite, which led to physical changes of granite. Hence it is concluded that, heating can significantly weaken the mechanical performance of granite, which provides an important support for the optimization of heating assisted processing of granite. It also reveals that, heating assisted cutting technique can effectively lower energy consumption and improve processing efficiency