2 research outputs found

    Fog Measurements with IR Whole Sky Imager and Doppler Lidar, Combined with In Situ Instruments

    No full text
    This study describes comprehensive measurements performed for four consecutive nights during a regional-scale radiation fog event in Israel’s central and southern areas in January 2021. Our data included both in situ measurements of droplets size distribution, visibility range, and meteorological parameters and remote sensing with a thermal IR Whole Sky Imager and a Doppler Lidar. This work is the first extensive field campaign aimed to characterize fog properties in Israel and is a pioneer endeavor that encompasses simultaneous remote sensing measurements and analysis of a fog event with a thermal IR Whole Sky Imager. Radiation fog, as monitored by the sensor’s field of view, reveals three distinctive properties that make it possible to identify it. First, it exhibits an azimuthal symmetrical shape during the buildup phase. Second, the zenith brightness temperature is very close to the ground-level air temperature. Lastly, the rate of increase in cloud cover up to a completely overcast sky is very fast. Additionally, we validated the use of a Doppler Lidar as a tool for monitoring fog by proving that the measured backscatter-attenuation vertical profile agrees with the calculation of the Lidar equation fed with data measured by in situ instruments. It is shown that fog can be monitored by those two, off-the-shelf-stand-off-sensing technologies that were not originally designed for fog purposes. It enables the monitoring of fog properties such as type, evolution with time and vertical depth, and opens the path for future works of studying the different types of fog events

    Profiling the Planetary Boundary Layer Wind with a StreamLine XR Doppler LiDAR: Comparison to In-Situ Observations and WRF Model Simulations

    No full text
    Halo-Photonics StreamLine XR Doppler LiDAR measurements are performed using several scan configurations (Velocity Azimuth Display-VAD and Doppler Beam Swing-DBS) and elevation angles of 60° and 80°. The measurements are compared to wind observations conducted by various in situ instruments (tethered balloon, meteorological mast, and radiosondes). Good agreement is obtained, with R2 over 0.90 for wind speed and a standard error ≤ 18.6° for wind direction. The best performance was attained for lower elevation scans (60°), which is consistent with the higher spatial horizontal homogeneity exhibited by lower angle scans. VAD and DBS scans performed almost equally well with slight advantage for VAD in higher altitudes and for DBS for lower altitudes. The boundary layer structure along a diurnal cycle is analyzed by utilizing retrieved backscatter data and wind measurements in conjunction with Weather Research and Forecast (WRF) simulations. The presence of multiple inversions which allow the coexistence of different layers within the studied profile is also verified using data acquired by several radiosondes. Synergic use of LiDAR data with WRF simulations for low SNR regions is demonstrated