197 research outputs found

    Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth

    Get PDF
    Myelination of axons by oligodendrocytes enables fast saltatory conduction. Oligodendrocytes are responsive to neuronal activity, which has been shown to induce changes to myelin sheaths, potentially to optimize conduction and neural circuit function. However, the cellular bases of activity-regulated myelination in vivo are unclear, partly due to the difficulty of analyzing individual myelinated axons over time. Activity-regulated myelination occurs in specific neuronal subtypes and can be mediated by synaptic vesicle fusion, but several questions remain: it is unclear whether vesicular fusion occurs stochastically along axons or in discrete hotspots during myelination and whether vesicular fusion regulates myelin targeting, formation, and/or growth. It is also unclear why some neurons, but not others, exhibit activity-regulated myelination. Here, we imaged synaptic vesicle fusion in individual neurons in living zebrafish and documented robust vesicular fusion along axons during myelination. Surprisingly, we found that axonal vesicular fusion increased upon and required myelination. We found that axonal vesicular fusion was enriched in hotspots, namely the heminodal non-myelinated domains into which sheaths grew. Blocking vesicular fusion reduced the stable formation and growth of myelin sheaths, and chemogenetically stimulating neuronal activity promoted sheath growth. Finally, we observed high levels of axonal vesicular fusion only in neuronal subtypes that exhibit activity-regulated myelination. Our results identify a novel "feedforward" mechanism whereby the process of myelination promotes the neuronal activity-regulated signal, vesicular fusion that, in turn, consolidates sheath growth along specific axons selected for myelination

    Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones

    Get PDF
    In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol(-/-) embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol(-/-) mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphe nucleus and the trochlear motor nucleus are absent in mol(-/-) embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins

    Associated Factors for Falls among the Community-Dwelling Older People Assessed by Annual Geriatric Health Examinations

    Get PDF
    BACKGROUND: Falls are very common among the older people. Nearly one-third older people living in a community fall each year. However, few studies have examined factors associated with falls in a community-dwelling population of older Taiwanese adults. OBJECTIVES: To identify the associated factors for falls during the previous 12 months among the community-dwelling Taiwanese older people receiving annual geriatric health examinations. PARTICIPANTS: People aged sixty-five years or older, living in the community, assessed by annual geriatric health examinations METHODS: 1377 community-dwellers aged ≥65 years who received annual geriatric health examinations at one hospital in northern Taiwan between March and November of 2008. They were asked about their history of falls during the year prior to their most recent health examination. RESULTS: The average age of the 1377 participants was 74.9±6.8 years, 48.9% of which were women. Three-hundred and thirteen of the participants (22.7%) had at least one fall during the previous year. Multivariate analysis showed that odds ratio for the risk of falling was 1.94 (95% CI 1.36-2.76) when the female gender group is compared with the male gender group. The adjusted odds ratios of age and waist circumference were 1.03 (95% CI 1.00-1.06) and 1.03 (95% CI 1.01-1.05) respectively. The adjusted odds ratios of visual acuity, Karnofsky scale, and serum albumin level were 0.34 (95% CI 0.15-0.76), 0.94 (95% CI 0.89-0.98), and 0.37 (95% CI 0.18-0.76) respectively. Larger waist circumference, older age, female gender, poorer visual acuity, lower score on the Karnofsky Performance Scale, and lower serum albumin level were the independent associated factors for falls. CONCLUSION: In addition to other associated factors, waist circumference should be included as a novel risk factor for falls

    Establishment of a New Cell Line from Lepidopteran Epidermis and Hormonal Regulation on the Genes

    Get PDF
    When an insect molts, old cuticle on the outside of the integument is shed by apolysis and a new cuticle is formed under the old one. This process is completed by the epidermal cells which are controlled by 20-hydroxyecdysone (20E) and juvenile hormone. To understand the molecular mechanisms of integument remolding and hormonal regulation on the gene expression, an epidermal cell line from the 5th instar larval integument of Helicoverpa armigera was established and named HaEpi. The cell line has been cultured continuously for 82 passages beginning on June 30, 2005 until now. Cell doubling time was 64 h. The chromosomes were granular and the chromosome mode was from 70 to 76. Collagenase I was used to detach the cells from the flask bottom. Non-self pathogen AcMNPV induced the cells to apoptosis. The cell line was proved to be an epidermal cell line based on its unique gene expression pattern. It responded to 20E and the non-steroidal ecdysone agonist RH-2485. Its gene expression could be knocked down using RNA interference. Various genes in the cell line were investigated based on their response to 20E. This new cell line represents a platform for investigating the 20E signaling transduction pathway, the immune response mechanism in lepidopteran epidermis and interactions of the genes

    Timing of embryonic quiescence determines viability of embryos from the calanoid copepod, Acartia tonsa (Dana)

    Get PDF
    <div><p>Like 41 other calanoid copepods, <i>Acartia tonsa</i>, are capable of inducing embryonic quiescence when experiencing unfavorable environmental conditions. The ecdysone-signaling cascade is known to have a key function in developmental processes like embryogenesis and molting of arthropods, including copepods. We examined the role of <i>ecdysteroid-phosphate phosphatase</i> (<i>EPPase</i>), <i>ecdysone receptor</i> (<i>EcR</i>), <i>ß fushi tarazu transcription factor 1</i> (<i>ßFTZ-F1</i>), and the <i>ecdysteroid-regulated early gene E74</i> (<i>E74</i>), which represent different levels of the ecdysone-signaling cascade in our calanoid model organism. Progression of embryogenesis was monitored and hatching success determined to evaluate viability. Embryos that were induced quiescence before the gastrulation stage would stay in gastrulation during the rest of quiescence and exhibited a slower pace of hatching as compared to subitaneous embryos. In contrast, embryos developed further than gastrulation would stay in gastrulation or later stages during quiescence and showed a rapid pace in hatching after quiescence termination. Expression patterns suggested two peaks of the biological active ecdysteroids, 20-hydroxyecdysone (20E). The first peak of 20E was expressed in concert with the beginning of embryogenesis originating from yolk-conjugated ecdysteroids, based on <i>EPPase</i> expression. The second peak is suggested to originate from <i>de novo</i> synthesized 20E around the limb bud stage. During quiescence, the expression patterns of <i>EPPase</i>, <i>EcR</i>, <i>ßFTZ-F1</i>, and <i>E74</i> were either decreasing or not changing over time. This suggests that the ecdysone-signaling pathway play a key role in the subitaneous development of <i>A</i>. <i>tonsa</i> embryogenesis, but not during quiescence. The observation is of profound ecological and practical relevance for the dynamics of egg banks.</p></div

    R-SNARE Homolog MoSec22 Is Required for Conidiogenesis, Cell Wall Integrity, and Pathogenesis of Magnaporthe oryzae

    Get PDF
    Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular vesicle fusion, which is an essential cellular process of the eukaryotic cells. To investigate the role of SNARE proteins in the rice blast fungus Magnaporthe oryzae, MoSec22, an ortholog of Saccharomyces cerevisiae SNARE protein Sec22, was identified and the MoSEC22 gene disrupted. MoSec22 restored a S. cerevisiae sec22 mutant in resistance to cell wall perturbing agents, and the ΔMosec22 mutant also exhibited defects in mycelial growth, conidial production, and infection of the host plant. Treatment with oxidative stress inducers indicated a breach in cell wall integrity, and staining and quantification assays suggested abnormal chitin deposition on the lateral walls of hyphae of the ΔMosec22 mutant. Furthermore, hypersensitivity to the oxidative stress correlates with the reduced expression of the extracellular enzymes peroxidases and laccases. Our study thus provides new evidence on the conserved function of Sec22 among fungal organisms and indicates that MoSec22 has a role in maintaining cell wall integrity affecting the growth, morphogenesis, and virulence of M. oryzae

    Genome-wide examination of the transcriptional response to ecdysteroids 20-hydroxyecdysone and ponasterone A in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 20-hydroxyecdysone (20E) hierarchy of gene activation serves as an attractive model system for studying the mode of steroid hormone regulated gene expression and development. Many structural analogs of 20E exist in nature and among them the plant-derived ponasterone A (PoA) is the most potent. PoA has a higher affinity for the 20E nuclear receptor, composed of the ecysone receptor (EcR) and Ultraspiracle proteins, than 20E and a comparison of the genes regulated by these hormones has not been performed. Furthermore, in <it>Drosophila </it>different cell types elicit different morphological responses to 20E yet the cell type specificity of the 20E transcriptional response has not been examined on a genome-wide scale. We aim to characterize the transcriptional response to 20E and PoA in <it>Drosophila </it>Kc cells and to 20E in salivary glands and provide a robust comparison of genes involved in each response.</p> <p>Results</p> <p>Our genome-wide microarray analysis of Kc167 cells treated with 20E or PoA revealed that far more genes are regulated by PoA than by 20E (256 vs 148 respectively) and that there is very little overlap between the transcriptional responses to each hormone. Interestingly, genes induced by 20E relative to PoA are enriched in functions related to development. We also find that many genes regulated by 20E in Kc167 cells are not regulated by 20E in salivary glands of wandering 3<sup>rd </sup>instar larvae and we show that 20E-induced levels of <it>EcR </it>isoforms <it>EcR-RA, ER-RC</it>, and <it>EcR-RD/E </it>differ between Kc cells and salivary glands suggesting a possible cause for the observed differences in 20E-regulated gene transcription between the two cell types.</p> <p>Conclusions</p> <p>We report significant differences in the transcriptional responses of 20E and PoA, two steroid hormones that differ by only a single hydroxyl group. We also provide evidence that suggests that PoA induced death of non-adapted insects may be related to PoA regulating different set of genes when compared to 20E. In addition, we reveal large differences between Kc cells and salivary glands with regard to their genome-wide transcriptional response to 20E and show that the level of induction of certain EcR isoforms differ between Kc cells and salivary glands. We hypothesize that the differences in the transcriptional response may in part be due to differences in the EcR isoforms present in different cell types.</p

    Sidestream cigarette smoke effects on cardiovascular responses in conscious rats: involvement of oxidative stress in the fourth cerebral ventricle

    Get PDF
    Background: Cigarette exposure increases brain oxidative stress. The literature showed that increased brain oxidative stress affects cardiovascular regulation. However, no previous study investigated the involvement of brain oxidative stress in animals exposed to cigarette and its relationship with cardiovascular regulation. We aimed to evaluate the effects of central catalase inhibition on baroreflex and cardiovascular responses in rats exposed to sidestream cigarette smoke (SSCS). Methods: We evaluated males Wistar rats (320-370 g), which were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). Femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. Rats were exposed to SSCS during three weeks, 180 minutes, 5 days/week (CO: 100-300 ppm). Baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) to induce bradycardic reflex and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus) to induce tachycardic reflex. Cardiovascular responses were evaluated before, 5, 15, 30 and 60 minutes after 3-amino-1,2,4-triazole (ATZ, catalase inhibitor, 0.001 g/100 mu L) injection into the 4th V. Results: Central catalase inhibition increased basal HR in the control group during the first 5 minutes. SSCS exposure increased basal HR and attenuated bradycardic peak during the first 15 minutes. Conclusion: We suggest that SSCS exposure affects cardiovascular regulation through its influence on catalase activity.Foundation of Support to Research of Sao Paulo State (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP [07/59127-9

    The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland

    Get PDF
    The red fox (Vulpes vulpes) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002–2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management

    HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development.

    Get PDF
    Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis
    corecore