197 research outputs found

    Crystal structure of polysaccharide lyase family 20 endo-β-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei

    Get PDF
    AbstractThe crystal structure of endo-β-(1→4)-glucuronan lyase from Trichoderma reesei (TrGL) has been determined at 1.8Å resolution as the first three-dimensional structure of polysaccharide lyase (PL) family 20. TrGL has a typical β-jelly roll fold, which is similar to glycoside hydrolase family 16 and PL7 enzymes. A calcium ion is bound to the site far from the cleft and appears to contribute to the stability. There are several completely conserved residues in the cleft. Possible catalytic residues are predicted based on structural comparison with PL7 alginate lyase A1–II′

    Lumbar Spinal Stenosis Has a Negative Impact on Quality of Life Compared with Other Comorbidities: An Epidemiological Cross-Sectional Study of 1862 Community-Dwelling Individuals

    Get PDF
    Lumbar spinal stenosis (LSS) is common in the elderly. However, there have been few reports on its impact on quality of life (QoL) in community-dwelling individuals. The purpose of this study was to clarify how symptomatic LSS affects QoL at the community level. A total of 1862 people (697 males and 1165 females, most subjects were between 40 and 85 y.o.) agreed to participate and were interviewed. The presence of symptomatic LSS was assessed by a specially designed questionnaire. The Medical Outcomes Study 36-Item Short Form Health Survey (SF-36) was also administered. In addition, the presence of comorbid conditions that affect QoL, such as osteoarthritis of the knee and hip, cardiovascular disease, cerebrovascular disease, or respiratory disease, was also analyzed. The prevalence of symptomatic LSS gradually increased with age. Furthermore, the presence of symptomatic LSS had a strong negative effect on all 8 physical and mental domains and the physical component summary (PCS) (OR: 1.547–2.544) but not the mental component summary (MCS). In comparison with comorbid conditions, LSS had a much stronger negative impact on health-related QoL (HR-QoL). The current study confirmed that the presence of symptomatic LSS might have a strong negative influence on HR-QoL in the community setting

    The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose

    Get PDF
    Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61), some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33), this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency

    Distance measurements between 5 nanometer diamonds – single particle magnetic resonance or optical super-resolution imaging?

    Full text link
    5 nanometer sized detonation nanodiamonds (DNDs) are studied as potential single-particle labels for distance measurements in biomolecules

    Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19 at the Chiba composite section, central Japan: A key reference for the EarlyeMiddle Pleistocene Subseries boundary

    Get PDF
    Marine Isotope Stage (MIS) 19 is an important analogue for the present interglacial because of its similar orbital configuration, especially the phasing of the obliquity maximum to precession minimum. However, sedimentary records suitable for capturing both terrestrial and marine environmental changes are limited, and thus the climatic forcing mechanisms for MIS 19 are still largely unknown. The Chiba composite section, east-central Japanese archipelago, is a continuous and expanded marine sedimentary succession well suited to capture terrestrial and marine environmental changes through MIS 19. In this study, a detailed oxygen isotope chronology is established from late MIS 20 to early MIS 18, supported by a U-Pb zircon age and the presence of the Matuyama–Brunhes boundary. New pollen, marine microfossil, and planktonic foraminiferal δ18O and Mg/Ca paleotemperature records reveal the complex interplay of climatic influences. Our pollen data suggest that the duration of full interglacial conditions during MIS 19 extends from 785.0 to 775.1 ka (9.9 kyr), which offers an important natural baseline in predicting the duration of the present interglacial. A Younger Dryas-type cooling event is present during Termination IX, suggesting that such events are linked to this orbital configuration. Millennial- to multi-millennial-scale variations in our δ18O and Mg/Ca records imply that the Subarctic Front fluctuated in the northwestern Pacific Ocean during late MIS 19, probably in response to East Asian winter monsoon variability. The climatic setting at this time appears to be related to less severe summer insolation minima at 65˚N and/or high winter insolation at 50˚N. Our records do not support a recently hypothesized direct coupling between variations in the geomagnetic field intensity and global/regional climate change. Our highly resolved paleoclimatic and paleoceanographic records, coupled with a well-defined Matuyama–Brunhes boundary (772.9 ka; duration 1.9 kyr), establish the Chiba composite section as an exceptional climatic and chronological reference section for the Early–Middle Pleistocene boundary.ArticleQuaternary Science Reviews 191: 406-430(2018)journal articl

    Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Colletotrichum </it>is one of the most widespread and important genus of plant pathogenic fungi worldwide. Various species of <it>Colletotrichum </it>are the causative agents of anthracnose disease in plants, which is a severe problem to agricultural crops particularly in Thailand. These phytopathogens are usually controlled using chemicals; however, the use of these agents can lead to environmental pollution. Potential non-chemical control strategies for anthracnose disease include the use of bacteria capable of producing anti-fungal compounds such as actinomycetes spp., that comprise a large group of filamentous, Gram positive bacteria from soil. The aim of this study was to isolate actinomycetes capable of inhibiting the growth of <it>Colletotrichum </it>spp, and to analyze the diversity of actinomycetes from plant rhizospheric soil.</p> <p>Results</p> <p>A total of 304 actinomycetes were isolated and tested for their inhibitory activity against <it>Colletotrichum gloeosporioides </it>strains DoA d0762 and DoA c1060 and <it>Colletotrichum capsici </it>strain DoA c1511 which cause anthracnose disease as well as the non-pathogenic <it>Saccharomyces cerevisiae </it>strain IFO 10217. Most isolates (222 out of 304, 73.0%) were active against at least one indicator fungus or yeast. Fifty four (17.8%) were active against three anthracnose fungi and 17 (5.6%) could inhibit the growth of all three fungi and <it>S. cerevisiae </it>used in the test. Detailed analysis on 30 selected isolates from an orchard at Chanthaburi using the comparison of 16S rRNA gene sequences revealed that most of the isolates (87%) belong to the genus <it>Streptomyces </it>sp., while one each belongs to <it>Saccharopolyspora </it>(strain SB-2) and <it>Nocardiopsis </it>(strain CM-2) and two to <it>Nocardia </it>(strains BP-3 and LK-1). Strains LC-1, LC-4, JF-1, SC-1 and MG-1 exerted high inhibitory activity against all three anthracnose fungi and yeast. In addition, the organic solvent extracts prepared from these five strains inhibited conidial growth of the three indicator fungi. Preliminary analysis of crude extracts by high performance liquid chromatography (HPLC) indicated that the sample from strain JF-1 may contain a novel compound. Phylogenetic analysis revealed that this strain is closely related to <it>Streptomyces cavurensis </it>NRRL 2740 with 99.8% DNA homology of 16S rRNA gene (500 bp).</p> <p>Conclusion</p> <p>The present study suggests that rhizospheric soil is an attractive source for the discovery of a large number of actinomycetes with activity against <it>Colletotrichum </it>spp. An interesting strain (JF-1) with high inhibitory activity has the potential to produce a new compound that may be useful in the control of <it>Colletotrichum </it>spp.</p

    Interlaboratory comparison study of the Colony Forming Efficiency assay for assessing cytotoxicity of nanomaterials

    Get PDF
    Nanotechnology has gained importance in the past years as it provides opportunities for industrial growth and innovation. However, the increasing use of manufactured nanomaterials (NMs) in a number of commercial applications and consumer products raises also safety concerns and questions regarding potential unintended risks to humans and the environment. Since several years the European Commission’s Joint Research Centre (JRC) is putting effort in the development, optimisation and harmonisation of in vitro test methods suitable for screening and hazard assessment of NMs. Work is done in collaboration with international partners, in particular the Organisation for Economic Co-operation and Development (OECD). This report presents the results from an interlaboratory comparison study of the in vitro Colony Forming Efficiency (CFE) cytotoxicity assay performed in the frame of OECD's Working Party of Manufactured Nanomaterials (WPMN). Twelve laboratories from European Commission, France, Italy, Japan, Poland, Republic of Korea, South Africa and Switzerland participated in the study coordinated by JRC. The results show that the CFE assay is a suitable and robust in vitro method to assess cytotoxicity of NMs. The assay protocol is well defined and is easily and reliably transferable to other laboratories. The results obtained show good intra and interlaboratory reproducibility of the assay for both the positive control and the tested nanomaterials. In conclusion the CFE assay can be recommended as a building block of an in vitro testing battery for NMs toxicity assessment. It could be used as a first choice method to define dose-effect relationships for other in vitro assays.JRC.I.4-Nanobioscience

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore