4 research outputs found

    Competitive Adsorption on Graphite Investigated Using Frequency-Modulation Atomic Force Microscopy: Interfacial Liquid Structure Controlled by the Competition of Adsorbed Species

    No full text
    The competitive adsorption of long-chain (C<sub>18</sub> and C<sub>24</sub>) carboxylic acids versus <i>n</i>-decanol on graphite was investigated using frequency-modulation atomic force microscopy. A long-range-ordered monolayer of the solute (stearic acid or lignoceric acid) developed in saturated decanol solution, whereas an ordered decanol monolayer was deposited from dilute solutions. The piconewton-order tip–surface force was observed in solutions as a function of the vertical and lateral coordinates, together with the topography of the monolayers. The tip–surface force was periodically modulated, which was interpreted with a solution structure commensurate with the ordered assembly of adsorbed monolayers. These results show that the solution structure at the interface was controlled by the competitively adsorbed species and thus was sensitive to the composition of the bulk solution

    Cross-Sectional Structure of Liquid 1‑Decanol over Graphite

    No full text
    The interface of graphite and liquid 1-decanol was studied using frequency modulation atomic force microscopy (FM-AFM). The topography of epitaxially physisorbed decanol on the substrate was traced with submolecular resolution. The tip–surface force was monitored in the liquid as a function of the vertical and lateral tip coordinates to reveal the cross-sectional structure of the interfacial decanol. Four or more liquid layers were identified by vertically modulated force distributions. The first and second liquid layers were laterally heterogeneous, as evidenced by a force distribution that was periodically modulated along lateral coordinates. A possible structuring mechanism is proposed on the basis of energy gain by hydrogen bonding and van der Waals interactions

    Specific Hydration on <i>p</i>‑Nitroaniline Crystal Studied by Atomic Force Microscopy

    No full text
    The molecular-scale structure of water was studied over the (101) surface of p-nitroaniline crystals using advanced atomic force microscopy. p-Nitroaniline contains two polar groups on opposite ends of the nonpolar benzene ring and presents a surface of controlled heterogeneity. The cross-sectional distribution of force applied to the tip was precisely determined and was related to the local density of the structured water. Force modulations were present on the polar end-groups and absent on the benzene ring, suggesting water localization on the polar end-groups

    Fluorocyanoesters as Additives for Lithium-Ion Battery Electrolytes

    No full text
    A range of methyl 2-fluorocyanoester derivatives were synthesized from dimethyl 2-fluoromalonate ester, and their efficacy as additives in lithium-ion battery (LIB) electrolytes was determined. The role played by the 2-fluorocyanoester additives on battery performance was explored by linear sweep cyclic voltammetry, NMR, GCMS, and XPS techniques. For all fluorocyanoester additives studied, initial reduction of the carbonyl group occurs which is then followed by formation of the corresponding radical anion. Possible degradation routes arising from loss of fluoride ion, loss of methyl radicals, and cleavage of the αβ carbon–carbon bond were observed, and all affect battery performance. Electrode protection upon addition of fluorocyanoesters to the electrolyte is the main contribution to the improvement of battery stability, but improvements on the electrode protection are somewhat offset by free radical processes initiated at the anode. Longer alkyl-chain fluorocyanoesters showed the best LIB improvement with effective cathode protection
    corecore