97 research outputs found
Isotropic orbital magnetic moments in magnetically anisotropic SrRuO3 films
Epitaxially strained SrRuO3 films have been a model system for understanding
the magnetic anisotropy in metallic oxides. In this paper, we investigate the
anisotropy of the Ru 4d and O 2p electronic structure and magnetic properties
using high-quality epitaxially strained (compressive and tensile) SrRuO3 films
grown by machine-learning-assisted molecular beam epitaxy. The element-specific
magnetic properties and the hybridization between the Ru 4d and O 2p orbitals
were characterized by Ru M2,3-edge and O K-edge soft X-ray absorption
spectroscopy and X-ray magnetic circular dichroism measurements. The
magnetization curves for the Ru 4d and O 2p magnetic moments are identical,
irrespective of the strain type, indicating the strong magnetic coupling
between the Ru and O ions. The electronic structure and the orbital magnetic
moment relative to the spin magnetic moment are isotropic despite the
perpendicular and in-plane magnetic anisotropy in the compressive-strained and
tensile-strained SrRuO3 films; i.e., the orbital magnetic moments have a
negligibly small contribution to the magnetic anisotropy. This result
contradicts Bruno model, where magnetic anisotropy arises from the difference
in the orbital magnetic moment between the perpendicular and in-plane
directions. Contributions of strain-induced electric quadrupole moments to the
magnetic anisotropy are discussed, too
Evaluation of Precision-Cast TiNi Shape Memory Alloy Brain Spatula
In order to develop a brain spatula made of a shape memory alloy (SMA), this paper discusses the bending characteristics of a new brain spatula precision-cast in a TiNi SMA. Based on the yield stress and the modulus of elasticity of the copper and the TiNi SMAs, the bending deformation properties of the SMA-brain spatula were estimated by assuming the condition to use the brain spatula as the bending of the strip cantilever. With respect to the SMA-brain spatula for the same length and width as the existing copper one, if the thickness of the conventional rolled-SMA spatula is 1.3 times as large as that of the existing copper-brain spatula,the SMA spatula can hold the same bending rigidity and can be bent by a smaller force than the existing copper one. If the thickness of the new cast-SMA spatula is 1. 2 times as large as that of the existing-copper spatula, the SMA spatula can hold the same bending rigidity and can be bent by the same force as the existing copper one
- …