109 research outputs found

    Deep Search for Phosphine in a Prestellar Core

    Full text link
    Understanding in which chemical forms phosphorus exists in star- and planet-forming regions and how phosphorus is delivered to planets are of great interest from the viewpoint of the origin of life on Earth. Phosphine (PH3) is thought to be a key species to understanding phosphorus chemistry, but never has been detected in star- and planet-forming regions. We performed sensitive observations of the ortho-PH3 10−001_0-0_0 transition (266.944 GHz) toward the low-mass prestellar core L1544 with the ACA stand-alone mode of ALMA. The line was not detected down to 3σ\sigma levels in 0.07 km s−1^{-1} channels of 18 mK. The non-detection provides the upper limit to the gas-phase PH3 abundance of 5×10−125\times10^{-12} with respect to H2 in the central part of the core. Based on the gas-ice astrochemical modeling, we find the scaling relationship between the gas-phase PH3 abundance and the volatile (gas and ice with larger volatility than water) P elemental abundance for given physical conditions. This characteristic and well-constrained physical properties of L1544 allow us to constrain the upper limit to the volatile P elemental abundance of 5×10−95\times10^{-9}, which is a factor of 60 lower than the overall P abundance in the ISM. Then the majority of P should exist in refractory forms. The volatile P elemental abundance of L1544 is smaller than that in the coma of comet 67P/C-G, implying that the conversion of refractory phosphorus to volatile phosphorus could have occurred along the trail from the presolar core to the protosolar disk through e.g., sputtering by accretion/outflow shocks.Comment: 10 pages, 4 figures, 1 Table, accepted for publication in ApJ

    Molecular-Cloud-Scale Chemical Composition I: Mapping Spectral Line Survey toward W51 in the 3 mm Band

    Get PDF
    We have conducted a mapping spectral line survey toward the Galactic giant molecular cloud W51 in the 3 mm band with the Mopra 22 m telescope in order to study an averaged chemical composition of the gas extended over a molecular cloud scale in our Galaxy. We have observed the area of 25′×30′25' \times 30', which corresponds to 39 pc ×\times 47 pc. The frequency ranges of the observation are 85.1 - 101.1 GHz and 107.0 - 114.9 GHz. In the spectrum spatially averaged over the observed area, spectral lines of 12 molecular species and 4 additional isotopologues are identified. An intensity pattern of the spatially-averaged spectrum is found to be similar to that of the spiral arm in the external galaxy M51, indicating that these two sources have similar chemical compositions. The observed area has been classified into 5 sub-regions according to the integrated intensity of 13^{13}CO(J=1−0J=1-0) (I13COI_{\rm ^{13}CO}), and contributions of the fluxes of 11 molecular lines from each sub-region to the averaged spectrum have been evaluated. For most of molecular species, 50 % or more of the flux come from the sub-regions with I13COI_{\rm ^{13}CO} from 25 K km s−1^{-1} to 100 K km s−1^{-1}, which does not involve active star forming regions. Therefore, the molecular-cloud-scale spectrum observed in the 3 mm band hardly represents the chemical composition of star forming cores, but mainly represents the chemical composition of an extended quiescent molecular gas. The present result constitutes a sound base for interpreting the spectra of external galaxies at a resolution of a molecular cloud scale (∼10\sim10 pc) or larger.Comment: Accepted for publication in Ap

    AKARI Infrared Camera Survey of the Large Magellanic Cloud. I. Point Source Catalog

    Full text link
    We present a near- to mid-infrared point source catalog of 5 photometric bands at 3.2, 7, 11, 15 and 24 um for a 10 deg2 area of the Large Magellanic Cloud (LMC) obtained with the Infrared Camera (IRC) onboard the AKARI satellite. To cover the survey area the observations were carried out at 3 separate seasons from 2006 May to June, 2006 October to December, and 2007 March to July. The 10-sigma limiting magnitudes of the present survey are 17.9, 13.8, 12.4, 9.9, and 8.6 mag at 3.2, 7, 11, 15 and 24 um, respectively. The photometric accuracy is estimated to be about 0.1 mag at 3.2 um and 0.06--0.07 mag in the other bands. The position accuracy is 0.3" at 3.2, 7 and 11um and 1.0" at 15 and 24 um. The sensitivities at 3.2, 7, and 24 um are roughly comparable to those of the Spitzer SAGE LMC point source catalog, while the AKARI catalog provides the data at 11 and 15 um, covering the mid-infrared spectral range contiguously. Two types of catalog are provided: a Catalog and an Archive. The Archive contains all the detected sources, while the Catalog only includes the sources that have a counterpart in the Spitzer SAGE point source catalog. The Archive contains about 650,000, 140,000, 97,000, 43,000, and 52,000 sources at 3.2, 7, 11, 15, and 24 um, respectively. Based on the catalog, we discuss the luminosity functions at each band, the color-color diagram, and the color-magnitude diagram using the 3.2, 7, and 11 um band data. Stars without circumstellar envelopes, dusty C-rich and O-rich stars, young stellar objects, and background galaxies are located at distinct regions in the diagrams, suggesting that the present catalog is useful for the classification of objects towards the LMC.Comment: 59 pages, 12 figures, accepted for the Astronomical Journa
    • …
    corecore