114 research outputs found

### Short seed extractors against quantum storage

Some, but not all, extractors resist adversaries with limited quantum
storage. In this paper we show that Trevisan's extractor has this property,
thereby showing an extractor against quantum storage with logarithmic seed
length

### Adiabatic Quantum State Generation and Statistical Zero Knowledge

The design of new quantum algorithms has proven to be an extremely difficult
task. This paper considers a different approach to the problem, by studying the
problem of 'quantum state generation'. This approach provides intriguing links
between many different areas: quantum computation, adiabatic evolution,
analysis of spectral gaps and groundstates of Hamiltonians, rapidly mixing
Markov chains, the complexity class statistical zero knowledge, quantum random
walks, and more.
We first show that many natural candidates for quantum algorithms can be cast
as a state generation problem. We define a paradigm for state generation,
called 'adiabatic state generation' and develop tools for adiabatic state
generation which include methods for implementing very general Hamiltonians and
ways to guarantee non negligible spectral gaps. We use our tools to prove that
adiabatic state generation is equivalent to state generation in the standard
quantum computing model, and finally we show how to apply our techniques to
generate interesting superpositions related to Markov chains.Comment: 35 pages, two figure

### On the power of quantum, one round, two prover interactive proof systems

We analyze quantum two prover one round interactive proof systems, in which
noninteracting provers can share unlimited entanglement. The maximum acceptance
probability is characterized as a superoperator norm. We get some partial
results about the superoperator norm, and in particular we analyze the "rank
one" case.Comment: 12 pages, no figure

### Better short-seed quantum-proof extractors

We construct a strong extractor against quantum storage that works for every
min-entropy $k$, has logarithmic seed length, and outputs $\Omega(k)$ bits,
provided that the quantum adversary has at most $\beta k$ qubits of memory, for
any \beta < \half. The construction works by first condensing the source
(with minimal entropy-loss) and then applying an extractor that works well
against quantum adversaries when the source is close to uniform.
We also obtain an improved construction of a strong quantum-proof extractor
in the high min-entropy regime. Specifically, we construct an extractor that
uses a logarithmic seed length and extracts $\Omega(n)$ bits from any source
over \B^n, provided that the min-entropy of the source conditioned on the
quantum adversary's state is at least $(1-\beta) n$, for any \beta < \half.Comment: 14 page

### The hidden subgroup problem and quantum computation using group representations

The hidden subgroup problem is the foundation of many quantum algorithms. An efficient solution is known for the problem over abelian groups, employed by both Simon's algorithm and Shor's factoring and discrete log algorithms. The nonabelian case, however, remains open; an efficient solution would give rise to an efficient quantum algorithm for graph isomorphism. We fully analyze a natural generalization of the algorithm for the abelian case to the nonabelian case and show that the algorithm determines the normal core of a hidden subgroup: in particular, normal subgroups can be determined. We show, however, that this immediate generalization of the abelian algorithm does not efficiently solve graph isomorphism

### Improved Local Testing for Multiplicity Codes

Multiplicity codes are a generalization of Reed-Muller codes which include derivatives as well as the values of low degree polynomials, evaluated in every point in ?_p^m. Similarly to Reed-Muller codes, multiplicity codes have a local nature that allows for local correction and local testing. Recently, [Karliner et al., 2022] showed that the plane test, which tests the degree of the codeword on a random plane, is a good local tester for small enough degrees. In this work we simplify and extend the analysis of local testing for multiplicity codes, giving a more general and tight analysis. In particular, we show that multiplicity codes MRM_p(m, d, s) over prime fields with arbitrary d are locally testable by an appropriate k-flat test, which tests the degree of the codeword on a random k-dimensional affine subspace. The relationship between the degree parameter d and the required dimension k is shown to be nearly optimal, and improves on [Karliner et al., 2022] in the case of planes.
Our analysis relies on a generalization of the technique of canonincal monomials introduced in [Haramaty et al., 2013]. Generalizing canonical monomials to the multiplicity case requires substantially different proofs which exploit the algebraic structure of multiplicity codes

### Deterministic rendezvous, treasure hunts and strongly universal exploration sequences

We obtain several improved solutions for the deterministic rendezvous problem in general undirected graphs. Our solutions answer several problems left open by Dessmark et al. We also introduce an interesting variant of the rendezvous problem which we call the deterministic treasure hunt problem. Both the rendezvous and the treasure hunt problems motivate the study of universal traversal sequences and universal exploration sequences with some strengthened properties. We call such sequences strongly universal traversal (exploration) sequences. We give an explicit construction of strongly universal exploration sequences. The existence of strongly universal traversal sequences, as well as the solution of the most difficult variant of the deterministic treasure hunt problem, are left as intriguing open problems.

### Better lossless condensers through derandomized curve samplers

Lossless condensers are unbalanced expander graphs, with expansion close to optimal. Equivalently, they may be viewed as functions that use a short random seed to map a source on n bits to a source on many fewer bits while preserving all of the min-entropy. It is known how to build lossless condensers when the graphs are slightly unbalanced in the work of M. Capalbo et al. (2002). The highly unbalanced case is also important but the only known construction does not condense the source well. We give explicit constructions of lossless condensers with condensing close to optimal, and using near-optimal seed length. Our main technical contribution is a randomness-efficient method for sampling FD (where F is a field) with low-degree curves. This problem was addressed before in the works of E. Ben-Sasson et al. (2003) and D. Moshkovitz and R. Raz (2006) but the solutions apply only to degree one curves, i.e., lines. Our technique is new and elegant. We use sub-sampling and obtain our curve samplers by composing a sequence of low-degree manifolds, starting with high-dimension, low-degree manifolds and proceeding through lower and lower dimension manifolds with (moderately) growing degrees, until we finish with dimension-one, low-degree manifolds, i.e., curves. The technique may be of independent interest

- â€¦