384 research outputs found

    Minimal Work Principle and its Limits for Classical Systems

    Full text link
    The minimal work principle asserts that work done on a thermally isolated equilibrium system, is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well-defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For non-ergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte

    Alphacoronaviruses in New World Bats: Prevalence, Persistence, Phylogeny, and Potential for Interaction with Humans

    Get PDF
    Bats are reservoirs for many different coronaviruses (CoVs) as well as many other important zoonotic viruses. We sampled feces and/or anal swabs of 1,044 insectivorous bats of 2 families and 17 species from 21 different locations within Colorado from 2007 to 2009. We detected alphacoronavirus RNA in bats of 4 species: big brown bats (Eptesicus fuscus), 10% prevalence; long-legged bats (Myotis volans), 8% prevalence; little brown bats (Myotis lucifugus), 3% prevalence; and western long-eared bats (Myotis evotis), 2% prevalence. Overall, juvenile bats were twice as likely to be positive for CoV RNA as adult bats. At two of the rural sampling sites, CoV RNAs were detected in big brown and long-legged bats during the three sequential summers of this study. CoV RNA was detected in big brown bats in all five of the urban maternity roosts sampled throughout each of the periods tested. Individually tagged big brown bats that were positive for CoV RNA and later sampled again all became CoV RNA negative. Nucleotide sequences in the RdRp gene fell into 3 main clusters, all distinct from those of Old World bats. Similar nucleotide sequences were found in amplicons from gene 1b and the spike gene in both a big-brown and a long-legged bat, indicating that a CoV may be capable of infecting bats of different genera. These data suggest that ongoing evolution of CoVs in bats creates the possibility of a continued threat for emergence into hosts of other species. Alphacoronavirus RNA was detected at a high prevalence in big brown bats in roosts in close proximity to human habitations (10%) and known to have direct contact with people (19%), suggesting that significant potential opportunities exist for cross-species transmission of these viruses. Further CoV surveillance studies in bats throughout the Americas are warranted

    Trends and predictions of metabolic risk factors for acute myocardial infarction: findings from a multiethnic nationwide cohort

    Get PDF
    BACKGROUND: Understanding the trajectories of metabolic risk factors for acute myocardial infarction (AMI) is necessary for healthcare policymaking. We estimated future projections of the incidence of metabolic diseases in a multi-ethnic population with AMI. METHODS: The incidence and mortality contributed by metabolic risk factors in the population with AMI (diabetes mellitus [T2DM], hypertension, hyperlipidemia, overweight/obesity, active/previous smokers) were projected up to year 2050, using linear and Poisson regression models based on the Singapore Myocardial Infarction Registry from 2007 to 2018. Forecast analysis was stratified based on age, sex and ethnicity. FINDINGS: From 2025 to 2050, the incidence of AMI is predicted to rise by 194.4% from 482 to 1418 per 100,000 population. The largest percentage increase in metabolic risk factors within the population with AMI is projected to be overweight/obesity (880.0% increase), followed by hypertension (248.7% increase), T2DM (215.7% increase), hyperlipidemia (205.0% increase), and active/previous smoking (164.8% increase). The number of AMI-related deaths is expected to increase by 294.7% in individuals with overweight/obesity, while mortality is predicted to decrease by 11.7% in hyperlipidemia, 29.9% in hypertension, 32.7% in T2DM and 49.6% in active/previous smokers, from 2025 to 2050. Compared with Chinese individuals, Indian and Malay individuals bear a disproportionate burden of overweight/obesity incidence and AMI-related mortality. INTERPRETATION: The incidence of AMI is projected to continue rising in the coming decades. Overweight/obesity will emerge as fastest-growing metabolic risk factor and the leading risk factor for AMI-related mortality. FUNDING: This research was supported by the NUHS Seed Fund (NUHSRO/2022/058/RO5+6/Seed-Mar/03) and National Medical Research Council Research Training Fellowship (MOH-001131). The SMIR is a national, ministry-funded registry run by the National Registry of Diseases Office and funded by the Ministry of Health, Singapore

    Searches for B0(s)→J/ψppˉ and B+→J/ψppˉπ+ decays

    Get PDF
    The results of searches for B0(s)→J/ψ ppÂŻ and B + → J/ψ p pÂŻ π+ decays are reported. The analysis is based on a data sample, corresponding to an integrated luminosity of 1.0 fb−1 of pp collisions, collected with the LHCb detector. An excess with 2.8 σ significance is seen for the decay B0s→J/ψ ppÂŻ and an upper limit on the branching fraction is set at the 90 % confidence level: B(B0s→J/ψ ppÂŻ) < 4.8 × 10−6, which is the first such limit. No significant signals are seen for B0 → J/ψ ppÂŻ and B+ → J/ψ ppÂŻ π + decays, for which the corresponding limits are set: B(B0→J/ψ ppÂŻ) < 5.2 × 10−7, which significantly improves the existing limit; and B(B+→J/ψ ppÂŻÏ€+) < 5.0 × 10−7, which is the first limit on this branching fraction

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    Spiral attractor created by vector solitons

    Get PDF
    Mode-locked lasers emitting a train of femtosecond pulses called dissipative solitons are an enabling technology for metrology, high-resolution spectroscopy, fibre optic communications, nano-optics and many other fields of science and applications. Recently, the vector nature of dissipative solitons has been exploited to demonstrate mode locked lasing with both locked and rapidly evolving states of polarisation. Here, for an erbium-doped fibre laser mode locked with carbon nanotubes, we demonstrate the first experimental and theoretical evidence of a new class of slowly evolving vector solitons characterized by a double-scroll chaotic polarisation attractor substantially different from Lorenz, Rössler and Ikeda strange attractors. The underlying physics comprises a long time scale coherent coupling of two polarisation modes. The observed phenomena, apart from the fundamental interest, provide a base for advances in secure communications, trapping and manipulation of atoms and nanoparticles, control of magnetisation in data storage devices and many other areas

    Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO's Fifth and Virgo's First Science Run

    Get PDF
    We summarize the sensitivity achieved by the LIGO and Virgo gravitational wave detectors for compact binary coalescence (CBC) searches during LIGO's fifth science run and Virgo's first science run. We present noise spectral density curves for each of the four detectors that operated during these science runs which are representative of the typical performance achieved by the detectors for CBC searches. These spectra are intended for release to the public as a summary of detector performance for CBC searches during these science runs.Comment: 12 pages, 5 figure

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U
    • 

    corecore