115 research outputs found

    Squeezing based on nondegenerate frequency doubling internal to a realistic laser

    Get PDF
    We investigate theoretically the quantum fluctuations of the fundamental field in the output of a nondegenerate second harmonic generation process occuring inside a laser cavity. Due to the nondegenerate character of the nonlinear medium, a field orthogonal to the laser field is for some operating conditions indepedent of the fluctuations produced by the laser medium. We show that this fact may lead to perfect squeezing for a certain polarization mode of the fundamental field. The experimental feasibility of the system is also discussed.Comment: 6 pages, 5 figure

    Proposal for optical parity state re-encoder

    Full text link
    We propose a re-encoder to generate a refreshed parity encoded state from an existing parity encoded state. This is the simplest case of the scheme by Gilchrist et al. (Phys. Rev. A 75, 052328). We show that it is possible to demonstrate with existing technology parity encoded quantum gates and teleportation.Comment: 8 pages, 4 figure

    Input states for quantum gates

    Get PDF
    We examine three possible implementations of non-deterministic linear optical cnot gates with a view to an in-principle demonstration in the near future. To this end we consider demonstrating the gates using currently available sources such as spontaneous parametric down conversion and coherent states, and current detectors only able to distinguish between zero or many photons. The demonstration is possible in the co-incidence basis and the errors introduced by the non-optimal input states and detectors are analysed

    Non-deterministic Gates for Photonic Single Rail Quantum Logic

    Get PDF
    We discuss techniques for producing, manipulating and measureing qubits encoded optically as vacuum and single photon states. We show that a universal set of non-deterministic gates can be constructed using linear optics and photon counting. We investigate the efficacy of a test gate given realistic detector efficiencies.Comment: 8 pages, 6 figure

    Comparison of LOQC C-sign gates with ancilla inefficiency and an improvement to functionality under these conditions

    Get PDF
    We compare three proposals for non-deterministic C-sign gates implemented using linear optics and conditional measurements with non-ideal ancilla mode production and detection. The simplified KLM gate [Ralph et al, Phys.Rev.A {\bf 65}, 012314 (2001)] appears to be the most resilient under these conditions. We also find that the operation of this gate can be improved by adjusting the beamsplitter ratios to compensate to some extent for the effects of the imperfect ancilla.Comment: to appear in PR

    Secure quantum key distribution using squeezed states

    Get PDF
    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e^r=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.Comment: 19 pages, 3 figures, RevTeX and epsf, new section on channel losse

    Experimental requirements for Grover's algorithm in optical quantum computation

    Get PDF
    The field of linear optical quantum computation (LOQC) will soon need a repertoire of experimental milestones. We make progress in this direction by describing several experiments based on Grover's algorithm. These experiments range from a relatively simple implementation using only a single non-scalable CNOT gate to the most complex, requiring two concatenated scalable CNOT gates, and thus form a useful set of early milestones for LOQC. We also give a complete description of basic LOQC using polarization-encoded qubits, making use of many simplifications to the original scheme of Knill, Laflamme, and Milburn.Comment: 9 pages, 8 figure

    Experimental investigation of continuous variable quantum teleportation

    Get PDF
    We report the experimental demonstration of quantum teleportation of the quadrature amplitudes of a light field. Our experiment was stably locked for long periods, and was analyzed in terms of fidelity, F; and with signal transfer, T_{q}=T^{+}+T^{-}, and noise correlation, V_{q}=V_{in|out}^{+} V_{in|out}^{-}. We observed an optimum fidelity of 0.64 +/- 0.02, T_{q}= 1.06 +/- 0.02 and V_{q} =0.96 +/- 0.10. We discuss the significance of both T_{q}>1 and V_{q}<1 and their relation to the teleportation no-cloning limit.Comment: 4 pages, 4 figure

    Asymmetric quantum channel for quantum teleportation

    Get PDF
    There are a few obstacles, which bring about imperfect quantum teleportation of a continuous variable state, such as unavailability of maximally entangled two-mode squeezed states, inefficient detection and imperfect unitary transformation at the receiving station. We show that all those obstacles can be understood by a combination of an {\it asymmetrically-decohered} quantum channel and perfect apparatuses for other operations. For the asymmetrically-decohered quantum channel, we find some counter-intuitive results; one is that teleportation does not necessarily get better as the channel is initially squeezed more and another is when one branch of the quantum channel is unavoidably subject to some imperfect operations, blindly making the other branch as clean as possible may not result in the best teleportation result. We find the optimum strategy to teleport an unknown field for a given environment or for a given initial squeezing of the channel.Comment: 4pages, 1figur
    • …