1,683 research outputs found
Testing the Master Constraint Programme for Loop Quantum Gravity IV. Free Field Theories
This is the fourth paper in our series of five in which we test the Master
Constraint Programme for solving the Hamiltonian constraint in Loop Quantum
Gravity. We now move on to free field theories with constraints, namely Maxwell
theory and linearized gravity. Since the Master constraint involves squares of
constraint operator valued distributions, one has to be very careful in doing
that and we will see that the full flexibility of the Master Constraint
Programme must be exploited in order to arrive at sensible results.Comment: 23 pages, no figure
Complexifier Coherent States for Quantum General Relativity
Recently, substantial amount of activity in Quantum General Relativity (QGR)
has focussed on the semiclassical analysis of the theory. In this paper we want
to comment on two such developments: 1) Polymer-like states for Maxwell theory
and linearized gravity constructed by Varadarajan which use much of the Hilbert
space machinery that has proved useful in QGR and 2) coherent states for QGR,
based on the general complexifier method, with built-in semiclassical
properties. We show the following: A) Varadarajan's states {\it are}
complexifier coherent states. This unifies all states constructed so far under
the general complexifier principle. B) Ashtekar and Lewandowski suggested a
non-Abelean generalization of Varadarajan's states to QGR which, however, are
no longer of the complexifier type. We construct a new class of non-Abelean
complexifiers which come close to the one underlying Varadarajan's
construction. C) Non-Abelean complexifiers close to Varadarajan's induce new
types of Hilbert spaces which do not support the operator algebra of QGR. The
analysis suggests that if one sticks to the present kinematical framework of
QGR and if kinematical coherent states are at all useful, then normalizable,
graph dependent states must be used which are produced by the complexifier
method as well. D) Present proposals for states with mildened graph dependence,
obtained by performing a graph average, do not approximate well coordinate
dependent observables. However, graph dependent states, whether averaged or
not, seem to be well suited for the semiclassical analysis of QGR with respect
to coordinate independent operators.Comment: Latex, 54 p., no figure
Reduced Phase Space Quantization and Dirac Observables
In her recent work, Dittrich generalized Rovelli's idea of partial
observables to construct Dirac observables for constrained systems to the
general case of an arbitrary first class constraint algebra with structure
functions rather than structure constants. Here we use this framework and
propose a new way for how to implement explicitly a reduced phase space
quantization of a given system, at least in principle, without the need to
compute the gauge equivalence classes. The degree of practicality of this
programme depends on the choice of the partial observables involved. The
(multi-fingered) time evolution was shown to correspond to an automorphism on
the set of Dirac observables so generated and interesting representations of
the latter will be those for which a suitable preferred subgroup is realized
unitarily. We sketch how such a programme might look like for General
Relativity. We also observe that the ideas by Dittrich can be used in order to
generate constraints equivalent to those of the Hamiltonian constraints for
General Relativity such that they are spatially diffeomorphism invariant. This
has the important consequence that one can now quantize the new Hamiltonian
constraints on the partially reduced Hilbert space of spatially diffeomorphism
invariant states, just as for the recently proposed Master constraint
programme.Comment: 18 pages, no figure
Testing the Master Constraint Programme for Loop Quantum Gravity II. Finite Dimensional Systems
This is the second paper in our series of five in which we test the Master
Constraint Programme for solving the Hamiltonian constraint in Loop Quantum
Gravity. In this work we begin with the simplest examples: Finite dimensional
models with a finite number of first or second class constraints, Abelean or
non -- Abelean, with or without structure functions.Comment: 23 pages, no figure
Testing the Master Constraint Programme for Loop Quantum Gravity V. Interacting Field Theories
This is the final fifth paper in our series of five in which we test the
Master Constraint Programme for solving the Hamiltonian constraint in Loop
Quantum Gravity. Here we consider interacting quantum field theories,
specificlly we consider the non -- Abelean Gauss constraints of Einstein --
Yang -- Mills theory and 2+1 gravity. Interestingly, while Yang -- Mills theory
in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field
theory on Minkowski space, in background independent quantum field theories
such as Loop Quantum Gravity (LQG) this might become possible by working in a
new, background independent representation.Comment: 20 pages, no figure
Algebraic Quantum Gravity (AQG) III. Semiclassical Perturbation Theory
In the two previous papers of this series we defined a new combinatorical
approach to quantum gravity, Algebraic Quantum Gravity (AQG). We showed that
AQG reproduces the correct infinitesimal dynamics in the semiclassical limit,
provided one incorrectly substitutes the non -- Abelean group SU(2) by the
Abelean group in the calculations. The mere reason why that
substitution was performed at all is that in the non -- Abelean case the volume
operator, pivotal for the definition of the dynamics, is not diagonisable by
analytical methods. This, in contrast to the Abelean case, so far prohibited
semiclassical computations. In this paper we show why this unjustified
substitution nevertheless reproduces the correct physical result: Namely, we
introduce for the first time semiclassical perturbation theory within AQG (and
LQG) which allows to compute expectation values of interesting operators such
as the master constraint as a power series in with error control. That
is, in particular matrix elements of fractional powers of the volume operator
can be computed with extremely high precision for sufficiently large power of
in the expansion. With this new tool, the non -- Abelean
calculation, although technically more involved, is then exactly analogous to
the Abelean calculation, thus justifying the Abelean analysis in retrospect.
The results of this paper turn AQG into a calculational discipline
Quantum Spin Dynamics VIII. The Master Constraint
Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG)
was launched which replaces the infinite number of Hamiltonian constraints by a
single Master constraint. The MCP is designed to overcome the complications
associated with the non -- Lie -- algebra structure of the Dirac algebra of
Hamiltonian constraints and was successfully tested in various field theory
models. For the case of 3+1 gravity itself, so far only a positive quadratic
form for the Master Constraint Operator was derived. In this paper we close
this gap and prove that the quadratic form is closable and thus stems from a
unique self -- adjoint Master Constraint Operator. The proof rests on a simple
feature of the general pattern according to which Hamiltonian constraints in
LQG are constructed and thus extends to arbitrary matter coupling and holds for
any metric signature. With this result the existence of a physical Hilbert
space for LQG is established by standard spectral analysis.Comment: 19p, no figure
Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models
This is the third paper in our series of five in which we test the Master
Constraint Programme for solving the Hamiltonian constraint in Loop Quantum
Gravity. In this work we analyze models which, despite the fact that the phase
space is finite dimensional, are much more complicated than in the second
paper: These are systems with an SL(2,\Rl) gauge symmetry and the
complications arise because non -- compact semisimple Lie groups are not
amenable (have no finite translation invariant measure). This leads to severe
obstacles in the refined algebraic quantization programme (group averaging) and
we see a trace of that in the fact that the spectrum of the Master Constraint
does not contain the point zero. However, the minimum of the spectrum is of
order which can be interpreted as a normal ordering constant arising
from first class constraints (while second class systems lead to normal
ordering constants). The physical Hilbert space can then be be obtained after
subtracting this normal ordering correction.Comment: 33 pages, no figure
The Proca-field in Loop Quantum Gravity
In this paper we investigate the Proca-field in the framework of Loop Quantum
Gravity. It turns out that the methods developed there can be applied to the
symplectically embedded Proca-field, giving a rigorous, consistent,
non-perturbative quantization of the theory. This can be achieved by
introducing a scalar field, which has completely different properties than the
one used in spontaneous symmetry breaking. The analysis of the kernel of the
Hamiltonian suggests that the mass term in the quantum theory has a different
role than in the classical theory.Comment: 15 pages. v2: 19 pages, amended sections 2 and 6, references added
v3: 20 pages, amended section 6 and minor correction
The large cosmological constant approximation to classical and quantum gravity: model examples
We have recently introduced an approach for studying perturbatively classical
and quantum canonical general relativity. The perturbative technique appears to
preserve many of the attractive features of the non-perturbative quantization
approach based on Ashtekar's new variables and spin networks. With this
approach one can find perturbatively classical observables (quantities that
have vanishing Poisson brackets with the constraints) and quantum states
(states that are annihilated by the quantum constraints). The relative ease
with which the technique appears to deal with these traditionally hard problems
opens several questions about how relevant the results produced can possibly
be. Among the questions is the issue of how useful are results for large values
of the cosmological constant and how the approach can deal with several
pathologies that are expected to be present in the canonical approach to
quantum gravity. With the aim of clarifying these points, and to make our
construction as explicit as possible, we study its application in several
simple models. We consider Bianchi cosmologies, the asymmetric top, the coupled
harmonic oscillators with constant energy density and a simple quantum
mechanical system with two Hamiltonian constraints. We find that the technique
satisfactorily deals with the pathologies of these models and offers promise
for finding (at least some) results even for small values of the cosmological
constant. Finally, we briefly sketch how the method would operate in the full
four dimensional quantum general relativity case.Comment: 21 pages, RevTex, 2 figures with epsfi
- …