260 research outputs found

    Effects of spin fluctuations in the t-J model

    Full text link
    Recent experiments on the Fermi surface and the electronic structure of the cuprate-supercondutors showed the importance of short range antiferromagnetic correlations for the physics in these systems. Theoretically, features like shadow bands were predicted and calculated mainly for the Hubbard model. In our approach we calculate an approximate selfenergy of the tt-JJ model. Solving the U=U=\infty Hubbard model in the Dynamical Mean Field Theory (DMFT) yields a selfenergy that contains most of the local correlations as a starting point. Effects of the nearest neighbor spin interaction JJ are then included in a heuristical manner. Formally like in JJ-perturbation theory all ring diagrams, with the single bubble assumed to be purely local, are summed to get a correction to the DMFT-self engergy This procedure causes new bands and can furnish strong deformation of quasiparticle bands. % Our results are finally compared with %former approaches to the Hubbard model.Comment: 3 Pages, Latex, 2 Postscript-Figures submitted to Physica

    A Numerical Renormalization Group approach to Green's Functions for Quantum Impurity Models

    Full text link
    We present a novel technique for the calculation of dynamical correlation functions of quantum impurity systems in equilibrium with Wilson's numerical renormalization group. Our formulation is based on a complete basis set of the Wilson chain. In contrast to all previous methods, it does not suffer from overcounting of excitation. By construction, it always fulfills sum rules for spectral functions. Furthermore, it accurately reproduces local thermodynamic expectation values, such as occupancy and magnetization, obtained directly from the numerical renormalization group calculations.Comment: 13 pages, 7 figur

    The Dynamical Cluster Approximation (DCA) versus the Cellular Dynamical Mean Field Theory (CDMFT) in strongly correlated electrons systems

    Full text link
    We are commenting on the article Phys. Rev. {\bf B 65}, 155112 (2002) by G. Biroli and G. Kotliar in which they make a comparison between two cluster techniques, the {\it Cellular Dynamical Mean Field Theory} (CDMFT) and the {\it Dynamical Cluster Approximation} (DCA). Based upon an incorrect implementation of the DCA technique in their work, they conclude that the CDMFT is a faster converging technique than the DCA. We present the correct DCA prescription for the particular model Hamiltonian studied in their article and conclude that the DCA, once implemented correctly, is a faster converging technique for the quantities averaged over the cluster. We also refer to their latest response to our comment where they argue that instead of averaging over the cluster, local observables should be calculated in the bulk of the cluster which indeed makes them converge much faster in the CDMFT than in the DCA. We however show that in their original work, the authors themselves use the cluster averaged quantities to draw their conclusions in favor of using the CDMFT over the DCA.Comment: Comment on Phys. Rev. B 65, 155112 (2002). 3 pages, 2 figure

    Dual-fermion approach to the Anderson-Hubbard model

    Get PDF
    We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the quality of the approximation in comparison with an established cluster method. We continue with a three-dimensional (3d) system and look at the antiferromagnetic, Mott and Anderson localization transitions. The dual fermion approach leads to quantitative as well as qualitative improvement of the dynamical mean-field results and it allows one to calculate the hysteresis in the double occupancy in 3d taking into account nonlocal correlations

    Ferromagnetism in the large-U Hubbard model

    Full text link
    We study the Hubbard model on a hypercubic lattice with regard to the possibility of itinerant ferromagnetism. The Dynamical Mean Field theory is used to map the lattice model on an effective local problem, which is treated with help of the Non Crossing Approximation. By investigating spin dependent one-particle Green's functions and the magnetic susceptibility, a region with nonvanishing ferromagnetic polarization is found in the limit UU\to\infty. The δ\delta-T-phase diagram as well as thermodynamic quantities are discussed. The dependence of the Curie temperature on the Coulomb interaction and the competition between ferromagnetism and antiferromagnetism are studied in the large UU limit of the Hubbard model.Comment: 4 pages, 5 figures, accepted for publication in Physical Review B, Rapid Communication

    Superconductivity in the Kondo lattice model

    Full text link
    We study the Kondo lattice model with additional attractive interaction between the conduction electrons within the dynamical mean-field theory using the numerical renormalization group to solve the effective quantum impurity problem. In addition to normal-state and magnetic phases we also allow for the occurrence of a superconducting phase. In the normal phase we observe a very sensitive dependence of the low-energy scale on the conduction-electron interaction. We discuss the dependence of the superconducting transition on the interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding

    Charge gaps and quasiparticle bands of the ionic Hubbard model

    Full text link
    The ionic Hubbard model on a cubic lattice is investigated using analytical approximations and Wilson's renormalization group for the charge excitation spectrum. Near the Mott insulating regime, where the Hubbard repulsion starts to dominate all energies, the formation of correlated bands is described. The corresponding partial spectral weights and local densities of states show characteristic features, which compare well with a hybridized-band picture appropriate for the regime at small UU, which at half-filling is known as a band insulator. In particular, a narrow charge gap is obtained at half-filling, and the distribution of spectral quasi-particle weight reflects the fundamental hybridization mechanism of the model

    Efficient calculation of the antiferromagnetic phase diagram of the 3D Hubbard model

    Full text link
    The Dynamical Cluster Approximation with Betts clusters is used to calculate the antiferromagnetic phase diagram of the 3D Hubbard model at half filling. Betts clusters are a set of periodic clusters which best reflect the properties of the lattice in the thermodynamic limit and provide an optimal finite-size scaling as a function of cluster size. Using a systematic finite-size scaling as a function of cluster space-time dimensions, we calculate the antiferromagnetic phase diagram. Our results are qualitatively consistent with the results of Staudt et al. [Eur. Phys. J. B 17 411 (2000)], but require the use of much smaller clusters: 48 compared to 1000