2,425 research outputs found

    Stochastic Matrix Product States

    Get PDF
    The concept of stochastic matrix product states is introduced and a natural form for the states is derived. This allows to define the analogue of Schmidt coefficients for steady states of non-equilibrium stochastic processes. We discuss a new measure for correlations which is analogous to the entanglement entropy, the entropy cost SCS_C, and show that this measure quantifies the bond dimension needed to represent a steady state as a matrix product state. We illustrate these concepts on the hand of the asymmetric exclusion process

    Optimal evaluation of single-molecule force spectroscopy experiments

    Full text link
    The forced rupture of single chemical bonds under external load is addressed. A general framework is put forward to optimally utilize the experimentally observed rupture force data for estimating the parameters of a theoretical model. As an application we explore to what extent a distinction between several recently proposed models is feasible on the basis of realistic experimental data sets.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.

    Dissipation and lag in irreversible processes

    Full text link
    When a system is perturbed by the variation of external parameters, a lag generally develops between the actual state of the system and the equilibrium state corresponding to the current parameter values. We establish a microscopic, quantitative relation between this lag and the dissipated work that accompanies the process. We illustrate this relation using a model system.Comment: 6 pages, 3 figures, accepted for publication in EP

    Lower bound on the number of Toffoli gates in a classical reversible circuit through quantum information concepts

    Full text link
    The question of finding a lower bound on the number of Toffoli gates in a classical reversible circuit is addressed. A method based on quantum information concepts is proposed. The method involves solely concepts from quantum information - there is no need for an actual physical quantum computer. The method is illustrated on the example of classical Shannon data compression.Comment: 4 pages, 2 figures; revised versio

    Kinetics and thermodynamics of first-order Markov chain copolymerization

    Full text link
    We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detachment of monomers. Exact solutions are obtained for these kinetic equations in the steady regimes of multicomponent copolymerization and depolymerization. Thermodynamic equilibrium is identified as the state at which the growth velocity is vanishing on average and where detailed balance is satisfied. Away from equilibrium, the analytical expression of the thermodynamic entropy production is deduced in terms of the Shannon disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is recovered in the fully irreversible growth regime. The theory also applies to Bernoullian chains in the case where the attachment and detachment rates only depend on the reacting monomer

    Entanglement combing

    Full text link
    We show that all multi-partite pure states can, under local operations, be transformed into bi-partite pairwise entangled states in a "lossless fashion": An arbitrary distinguished party will keep pairwise entanglement with all other parties after the asymptotic protocol - decorrelating all other parties from each other - in a way that the degree of entanglement of this party with respect to the rest will remain entirely unchanged. The set of possible entanglement distributions of bi-partite pairs is also classified. Finally, we point out several applications of this protocol as a useful primitive in quantum information theory.Comment: 5 pages, 1 figure, replaced with final versio

    Natural Metric for Quantum Information Theory

    Full text link
    We study in detail a very natural metric for quantum states. This new proposal has two basic ingredients: entropy and purification. The metric for two mixed states is defined as the square root of the entropy of the average of representative purifications of those states. Some basic properties are analyzed and its relation with other distances is investigated. As an illustrative application, the proposed metric is evaluated for 1-qubit mixed states.Comment: v2: enlarged; presented at ISIT 2008 (Toronto

    Lower Bounds on Mutual Information

    Get PDF
    We correct claims about lower bounds on mutual information (MI) between real-valued random variables made in A. Kraskov {\it et al.}, Phys. Rev. E {\bf 69}, 066138 (2004). We show that non-trivial lower bounds on MI in terms of linear correlations depend on the marginal (single variable) distributions. This is so in spite of the invariance of MI under reparametrizations, because linear correlations are not invariant under them. The simplest bounds are obtained for Gaussians, but the most interesting ones for practical purposes are obtained for uniform marginal distributions. The latter can be enforced in general by using the ranks of the individual variables instead of their actual values, in which case one obtains bounds on MI in terms of Spearman correlation coefficients. We show with gene expression data that these bounds are in general non-trivial, and the degree of their (non-)saturation yields valuable insight.Comment: 4 page
    • …
    corecore