36,215 research outputs found
Development of the Submillimeter Band
This short article attempts to summarize my contribution to the field of submillimeter spectroscopy in the dense interstellar medium. It is taken mainly from my recollections and as a result some of the dates may be inaccurate. It covers most of the enabling receiver technology from frequencies of about 100 GHz to 2 THz and discusses the development of hot electron bolometers (HEB) and superconducting tunnel junction detectors (SIS). Many new molecular lines and some atomic lines have been revealed. These detectors are in use in the modern major projects such as ALMA and Herschel and will play their part in the many exciting projects of the next decade. Certainly one of the major contributions to the field has been the generation of many students who obtained Ph.D.s (14) and postdocs (25) in my group. The total number of national and international students who have obtained Ph.D.s (75) with use of the Caltech Submillimeter Observatory (CSO) and those who are currently studying using the CSO (44) is even more impressive
InSb Heterodyne Receivers For Submillimeter Astronomy
InSb hot electron bolometer mixer receivers have been used for submillimeter line studies of the interstellar medium up to frequencies of about 500 GHz (600u). Detections of new interstellar lines have been made, such as the ground state fine structure transition of atomic carbon at 492 GHz, and various transitions of molecules such as carbon monoxide and water. The bulk of this work has been performed with the NASA Kuiper Airborne Observatory telescope which is transported to an altitude of aboutl2,000 km by a C141 aircraft, so avoiding most of the effects of the Earth's atmosphere. Some observations have also been made at ground observatories with the 5 m Hale telescope at Mount Palomar and the NASA In-frared Telescope Facility at Mauna Kea, Hawaii. The heterodyne bolometer receivers have achieved noise temperatures of less than 400 K at all frequencies up to 500 GHz. Develop-ment work continues to extend the frequency range further into the submillimeter band
The Caltech Submillimeter Observatory
A brief description of the history and technology of the Caltech Submillimeter Observatory (CSO) is presented. The design of the 10.4 m Leighton telescope is discussed and also the methods used for fine adjustments of the surface. The dome design is explained, plus a short description is given of the technology of the detectors
Measurement of the sizes of circumstellar dust shells around evolved stars with high mass loss rates
The research supported by the NASA ADP contract NAG5-1153 has been completed. The attached paper, which will be submitted for publication in the Astrophysical Journal in January 1992, presents the results of this work. Here is a summary of the project and its results. A set of computer programs was developed to process the raw 60 micron and 100 micron IRAS survey data. The programs were designed to detect faint extended emission surrounding a bright unresolved source. Candidate objects were chosen from a list of red giant stars and young planetary nebulae which have been detected in millimeter/submillimeter lines of CO. Of the 279 stars examined, 55 were resolved at 60 microns. The principle results of the study are given. The average age for the shells surrounding the 9 Mira-type stars which are extended is 6 x 10(exp 4) yr. This suggests that the period during which these stars lose mass lasts for approx 10(exp 5) yr. The oldest shell found surrounds U Ori, and the youngest surrounds Mira itself. Some shells appear to be detached from the central star. This phenomenon is more common among older stars, suggesting that the mass loss becomes more episodic as the star sheds its envelope. Although all 8 stars less distant than 200 pc are resolved in the IRAS 60 micron data, 29 stars within 500 pc were not. These stars probably have younger circumstellar shells than those which were resolved. Almost all the carbon stars with distances of 500 pc or less have resolved shells, while only 1/2 of the oxygen-rich stars do. The resolved carbon star shells also are older on average than the oxygen-rich ones. These facts imply that carbon stars have been losing mass for a longer period, on average, than oxygen-rich red giants. Large circumstellar shells tend to be found at large distances from the galactic plane, confirming that the ISM density limits the size to which a dust shell can grow. Surprisingly, even very large shells seem to be nearly spherical, and do not appear to be distorted by ram-pressure caused by the star's motion with respect to the ISM. Radiative transfer models and the value of I sub 60 microns/I sub 100 microns allow the average dust temperature in the outer regions of a circumstellar shell to be estimated. The typical value obtained in about 35 K
Recommended from our members
A survey of nearby galaxies for CO
We have made a survey of the nuclei of 81 galaxies for the 1-) line of CO. 38 of the galaxies are from a complete sample with recession velocity ≦400 km s-1 and 21-cm line strength ≧10-27 Wm-2, and the remainder represent nearby galaxies with weaker or no HI, early-type galaxies (E/SO/Sa) with detected HI and active/infrared galaxies.
Galaxies with strong CO lines like M82, NGC253 and IC342 are exceedingly rare: all the galaxies we observed are weaker than 0/2K except the irregular galaxy DDO133 with T*A=0.22K. We have new, confirmed detections of two other irregular galaxies, IC10 and Pegasus, at a weaker level, and unconfirmed detections of the irregular NGC3109 and the nearest Type I Seyfert galaxy NGC4051. We have confirmed the existence of CO in the nucleus of NGC6946 and obtained spectra of new positions in M82 and NGC253
The molecular emission-line spectrum of IRC +10216 between 330 and 358 GHz
We have conducted a spectral line survey of IRC + 10216 using the Caltech Submillimeter Observatory to an
average sensitivity of ≾95 mK. A deconvolution algorithm has been used to derive the continuous single-sideband
spectrum from 330.2 to 358.1 GHz. A total of 56 spectral lines were detected of which 54 have been identified
with 8 molecules and a total of 18 isotopomers. The observed lines are used to derive column densities and relative abundances for the detected species. Within this frequency range the spectral lines detected contribute the majority of the total flux emitted by IRC + 10216. We use the derived column densities and excitation temperatures to
simulate the molecular line emission (assuming LTE) at frequencies up to 1000 GHz. The observed and simulated
flux from line emission is compared to broadband total flux measurements and to dust emission assuming a power-law variation of the dust emissivity. We conclude that significant corrections for the line flux must be made
to broadband flux measurements of IRC + 10216 at wavelengths longer than ~750 µm
Random matrix theory of unquenched two-colour QCD with nonzero chemical potential
We solve a random two-matrix model with two real asymmetric matrices whose
primary purpose is to describe certain aspects of quantum chromodynamics with
two colours and dynamical fermions at nonzero quark chemical potential mu. In
this symmetry class the determinant of the Dirac operator is real but not
necessarily positive. Despite this sign problem the unquenched matrix model
remains completely solvable and provides detailed predictions for the Dirac
operator spectrum in two different physical scenarios/limits: (i) the
epsilon-regime of chiral perturbation theory at small mu, where mu^2 multiplied
by the volume remains fixed in the infinite-volume limit and (ii) the
high-density regime where a BCS gap is formed and mu is unscaled. We give
explicit examples for the complex, real, and imaginary eigenvalue densities
including Nf=2 non-degenerate flavours. Whilst the limit of two degenerate
masses has no sign problem and can be tested with standard lattice techniques,
we analyse the severity of the sign problem for non-degenerate masses as a
function of the mass split and of mu.
On the mathematical side our new results include an analytical formula for
the spectral density of real Wishart eigenvalues in the limit (i) of weak
non-Hermiticity, thus completing the previous solution of the corresponding
quenched model of two real asymmetric Wishart matrices.Comment: 45 pages, 31 figures; references added, as published in JHE
A Line Survey of Orion KL from 325 to 360 GHz
We present a high-sensitivity spectral line survey of the high-mass star-forming region Orion KL in the 325-360 GHz frequency band. The survey was conducted at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. The sensitivity achieved is typically 0.1-0.5 K and is limited mostly by the sideband separation method utilized. We find 717 resolvable features consisting of 1004 lines, among which 60 are unidentified. The identified lines are due to 34 species and various isotopomers. Most of the unidentified lines are weak, and many of them most likely due to isotopomers or vibrationally or torsionally excited states of known species with unknown line frequencies, but a few reach the 2-5 K level. No new species have been identified, but we were able to strengthen evidence for the identification of ethanol in Orion and found the first nitrogen sulfide line in this source. The molecule dominating the integrated line emission is SO_2, which emits twice the intensity of CO, followed by SO, which is only slightly stronger than CO. In contrast, the largest number of lines is emitted from heavy organic rotors like HCOOCH_3, CH_3CH_2CN, and CH_3OCH_3, but their contribution to the total flux is unimportant. CH_3OH is also very prominent, both in the number of lines and in integrated flux. An interesting detail of this survey is the first detection of vibrationally excited HCN in the v_2 = 2 state, 2000 K above ground. Clearly this is a glimpse into the very inner part of the Orion hot core
Strong CH^+ J = 1–0 emission and absorption in DR21
We report the first detection of the ground-state rotational transition of the methylidyne cation CH^+ towards the massive star-forming region DR 21 with the HIFI instrument onboard the Herschel satellite. The line profile exhibits a broad emission line, in addition to two deep and broad absorption features associated with the DR 21 molecular ridge and foreground gas. These observations allow us to determine a ^(12)CH^(+)J = 1–0 line frequency of ν = 835 137 ± 3 MHz, in good agreement with a recent experimental determination. We estimate the CH^+ column density to be a few 10^(13) cm^(-2) in the gas seen in emission, and >10^(14) cm^(-2) in the components responsible for the absorption, which is indicative of a high line of sight average abundance [CH^+] /[H] > 1.2 × 10^(-8). We show that the CH^+ column densities agree well with the predictions of state-of-the-art C-shock models in dense UV-illuminated gas for the emission line, and with those of turbulent dissipation models in diffuse gas for the absorption lines
- …