816 research outputs found
Phase transitions of extended-range probabilistic cellular automata with two absorbing states
We study phase transitions in a long-range one-dimensional cellular automaton
with two symmetric absorbing states. It includes and extends several other
models, like the Ising and Domany-Kinzel ones. It is characterized by a
competing ferromagnetic linear coupling and an antiferromagnetic nonlinear one.
Despite its simplicity, this model exhibits an extremely rich phase diagram. We
present numerical results and mean-field approximations.Comment: New and expanded versio
Discovery of GRS 1915+105 variability patterns in the Rapid Burster
We report the discovery of two new types of variability in the neutron star
low-mass X-ray binary MXB 1730-335 (the 'Rapid Burster'). In one observation in
1999, it exhibits a large-amplitude quasi-periodic oscillation with a period of
about 7 min. In another observation in 2008, it exhibits two 4-min long 75 per
cent deep dips 44 min apart. These two kinds of variability are very similar to
the so-called or 'heartbeat' variability and the variability,
respectively, seen in the black hole low-mass X-ray binaries GRS 1915+105 and
IGR J17091-3624. This shows that these types of behavior are unrelated to a
black hole nature of the accretor. Our findings also show that these kinds of
behaviour need not take place at near-Eddington accretion rates. We speculate
that they may rather be related to the presence of a relatively wide orbit with
an orbital period in excess of a few days and about the relation between these
instabilities and the type II bursts.Comment: Accepted for publication in MNRAS letter
The Rapid Burster and its X-ray bursts: extremes of accretion and thermonuclear burning
X-ray bursts originate from accreting neutron stars (NSs) in X-ray binaries (XRBs). They come in two flavours: thermonuclear bursts are due to the sudden runaway burning of the material accreted on the surface; accretion bursts signal a sudden change in the mass accretion rate, leading to enhanced emission in the innermost regions of the accretion flow. While thermonuclear bursts have been observed from 105 NSs as of writing, accretion bursts remain enigmatically confined to only two sources. One of them, the Rapid Burster (RB), is the only one to have shown both types of bursts. My PhD project has dealt with studying this extraordinary source to understand the reason behind its uniqueness and, through that, answer open questions regarding both thermonuclear burning and unstable accretion
On Damage Spreading Transitions
We study the damage spreading transition in a generic one-dimensional
stochastic cellular automata with two inputs (Domany-Kinzel model) Using an
original formalism for the description of the microscopic dynamics of the
model, we are able to show analitically that the evolution of the damage
between two systems driven by the same noise has the same structure of a
directed percolation problem. By means of a mean field approximation, we map
the density phase transition into the damage phase transition, obtaining a
reliable phase diagram. We extend this analysis to all symmetric cellular
automata with two inputs, including the Ising model with heath-bath dynamics.Comment: 12 pages LaTeX, 2 PostScript figures, tar+gzip+u
Noise and nonlinearities in high-throughput data
High-throughput data analyses are becoming common in biology, communications,
economics and sociology. The vast amounts of data are usually represented in
the form of matrices and can be considered as knowledge networks. Spectra-based
approaches have proved useful in extracting hidden information within such
networks and for estimating missing data, but these methods are based
essentially on linear assumptions. The physical models of matching, when
applicable, often suggest non-linear mechanisms, that may sometimes be
identified as noise. The use of non-linear models in data analysis, however,
may require the introduction of many parameters, which lowers the statistical
weight of the model. According to the quality of data, a simpler linear
analysis may be more convenient than more complex approaches.
In this paper, we show how a simple non-parametric Bayesian model may be used
to explore the role of non-linearities and noise in synthetic and experimental
data sets.Comment: 12 pages, 3 figure
A population study of type II bursts in the Rapid Burster
Type II bursts are thought to arise from instabilities in the accretion flow
onto a neutron star in an X-ray binary. Despite having been known for almost 40
years, no model can yet satisfactorily account for all their properties. To
shed light on the nature of this phenomenon and provide a reference for future
theoretical work, we study the entire sample of Rossi X-ray Timing Explorer
data of type II bursts from the Rapid Burster (MXB 1730-335). We find that type
II bursts are Eddington-limited in flux, that a larger amount of energy goes in
the bursts than in the persistent emission, that type II bursts can be as short
as 0.130 s, and that the distribution of recurrence times drops abruptly below
15-18 s. We highlight the complicated feedback between type II bursts and the
NS surface thermonuclear explosions known as type I bursts, and between type II
bursts and the persistent emission. We review a number of models for type II
bursts. While no model can reproduce all the observed burst properties and
explain the source uniqueness, models involving a gating role for the magnetic
field come closest to matching the properties of our sample. The uniqueness of
the source may be explained by a special combination of magnetic field
strength, stellar spin period and alignment between the magnetic field and the
spin axis.Comment: Accepted 2015 February 12. Received 2015 February 10; in original
form 2014 December 1
Indications for a slow rotator in the Rapid Burster from its thermonuclear bursting behaviour
We perform time-resolved spectroscopy of all the type I bursts from the Rapid
Burster (MXB 1730-335) detected with the Rossi X-ray Timing Explorer. Type I
bursts are detected at high accretion rates, up to \sim 45% of the Eddington
luminosity. We find evidence that bursts lacking the canonical cooling in their
time-resolved spectra are, none the less, thermonuclear in nature. The type I
bursting rate keeps increasing with the persistent luminosity, well above the
threshold at which it is known to abruptly drop in other bursting low-mass
X-ray binaries. The only other known source in which the bursting rate keeps
increasing over such a large range of mass accretion rates is the 11 Hz pulsar
IGR J174802446. This may indicate a similarly slow spin for the neutron star
in the Rapid Burster
Small world effects in evolution
For asexual organisms point mutations correspond to local displacements in
the genotypic space, while other genotypic rearrangements represent long-range
jumps. We investigate the spreading properties of an initially homogeneous
population in a flat fitness landscape, and the equilibrium properties on a
smooth fitness landscape. We show that a small-world effect is present: even a
small fraction of quenched long-range jumps makes the results indistinguishable
from those obtained by assuming all mutations equiprobable. Moreover, we find
that the equilibrium distribution is a Boltzmann one, in which the fitness
plays the role of an energy, and mutations that of a temperature.Comment: 13 pages and 5 figures. New revised versio
- âŠ