27,185 research outputs found
Excited nucleon spectrum from lattice QCD with maximum entropy method
We study excited states of the nucleon in quenched lattice QCD with the
spectral analysis using the maximum entropy method. Our simulations are
performed on three lattice sizes , and
, at to address the finite volume issue. We find a
significant finite volume effect on the mass of the Roper resonance for light
quark masses. After removing this systematic error, its mass becomes
considerably reduced toward the direction to solve the level order puzzle
between the Roper resonance and the negative-parity nucleon
.Comment: Lattice2003(spectrum), 3 pages, 4 figure
Relaxor ferroelectricity induced by electron correlations in a molecular dimer Mott insulator
We have investigated the dielectric response in an antiferromagnetic
dimer-Mott insulator beta'-(BEDT-TTF)2ICl2 with square lattice, compared to a
spin liquid candidate kappa-(BEDT-TTF)2Cu2(CN)3. Temperature dependence of the
dielectric constant shows a peak structure obeying Curie-Weiss law with strong
frequency dependence. We found an anisotropic ferroelectricity by pyrocurrent
measurements, which suggests the charge disproportionation in a dimer. The
ferroelectric actual charge freezing temperature is related to the
antiferromagnetic interaction, which is expected to the charge-spin coupled
degrees of freedom in the system.Comment: 5 pages, 4 figures, to be published in Phys. Rev.
Gap Condition and Self-Dualized Super Yang-Mills Theory for ADE Gauge Group on K3
We try to determine the partition function of super Yang-Mills
theoy for ADE gauge group on K3 by self-dualizing our previous ADE partition
function. The resulting partition function satisfies gap condition.Comment: 17 page
Virtual Photon Structure Functions
We discuss the perturbatively calculable virtual photon structure functions.
First we present the framework for analyzing the structure functions of the
virtual photon and derive a first moment of of the virtual photon.
We then investigate the three positivity constraints satisfied by the eight
structure functions of the virtual photon.Comment: 5 pages, LaTeX, 5 eps figures, npb.sty file included Talk given at
RADCOR/Loops and Legs 2002, Kloster Banz, Germany, September 8-13, 2002, to
appear in the Proceeding
Bayesian approach to the first excited nucleon state in lattice QCD
We present preliminary results from the first attempt to reconstruct the
spectral function in the nucleon and channels from lattice QCD data
using the maximum entropy method (MEM). An advantage of the MEM analysis is to
enable us to access information of the excited state spectrum. Performing
simulations on two lattice volumes, we confirm the large finite size effect on
the first excited nucleon state in the lighter quark mass region.Comment: Lattice2002(spectrum), Latex with espcrc2.sty, 3 pages, 3 figure
Electrical pump-and-probe study of spin singlet-triplet relaxation in a quantum dot
Spin relaxation from a triplet excited state to a singlet ground state in a
semiconductor quantum dot is studied by employing an electrical pump-and-probe
method. Spin relaxation occurs via cotunneling when the tunneling rate is
relatively large, confirmed by a characteristic square dependence of the
relaxation rate on the tunneling rate. When cotunneling is suppressed by
reducing the tunneling rate, the intrinsic spin relaxation is dominated by
spin-orbit interaction. We discuss a selection rule of the spin-orbit
interaction based on the observed double-exponential decay of the triplet
state.Comment: 4 pages, 4 figure
Fano-Kondo interplay in a side-coupled double quantum dot
We investigate low-temperature transport characteristics of a side-coupled
double quantum dot where only one of the dots is directly connected to the
leads. We observe Fano resonances, which arise from interference between
discrete levels in one dot and the Kondo effect, or cotunneling in general, in
the other dot, playing the role of a continuum. The Kondo resonance is
partially suppressed by destructive Fano interference, reflecting novel
Fano-Kondo competition. We also present a theoretical calculation based on the
tight-binding model with slave boson mean field approximation, which
qualitatively reproduces the experimental findings.Comment: 4 pages, 4 figure
- …