14,539 research outputs found
Short timescale behavior of colliding heavy nuclei at intermediate energies
An Antisymmetrized Molecular Dynamics model is used to explore the collision
of Cd projectiles with Mo target nuclei at E/A=50 MeV over a
broad range in impact parameter. The atomic number (Z), velocity, and emission
pattern of the reaction products are examined as a function of the impact
parameter and the cluster recognition time. The non-central collisions are
found to be essentially binary in character resulting in the formation of an
excited projectile-like fragment (PLF) and target-like fragment (TLF).
The decay of these fragments occurs on a short timescale, 100t300
fm/c. The average excitation energy deduced for the PLF and TLF
`saturates for mid-central collisions, 3.5b6 fm, with its magnitude
depending on the cluster recognition time. For short cluster recognition times
(t=150 fm/c), an average excitation energy as high as 6 MeV is
predicted. Short timescale emission leads to a loss of initial correlations and
results in features such as an anisotropic emission pattern of both IMFs and
alpha particles emitted from the PLF and TLF in peripheral collisions.Comment: 19 pages, 17 figure
Differential Input from the Amygdaloid Body to the Ventromedial Hypothalamic Nucleus in the Rat
Differential amygdaloid afferents to anterior dorsal, anterior ventral, posterior dorsal and posterior ventral subdivisions of the ventromedial hypothalamic nucleus (VMH) were studied by means of retrograde transport of horseradish peroxidase (HRP). Injections of tracer confined to the VMH subdivisions mentioned, and enhancement of tracer uptake and transport were achieved by iontophoretic delivery of an HRP solution containing poly-L-α-ornithine. It was shown that the medial, central, basolateral, basomedial, lateroposterior and intercalated nuclei of the amygdala constitute afferent input sources to the ventromedial nucleus in a topographic pattern related to the various subdivisions of the VMH. This topographically organized amygdala-VMH projection is discussed against the background of the functional role that both amygdala and VMH play in the control of feeding, apart from various other autonomous functions that both brain centers are known to be concerned with.
Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots
We study the electronic structure of a single self-assembled InAs quantum dot
by probing elastic single-electron tunneling through a single pair of weakly
coupled dots. In the region below pinch-off voltage, the non-linear threshold
voltage behavior provides electronic addition energies exactly as the linear,
Coulomb blockade oscillation does. By analyzing it, we identify the s and p
shell addition spectrum for up to six electrons in the single InAs dot, i.e.
one of the coupled dots. The evolution of shell addition spectrum with magnetic
field provides Fock-Darwin spectra of s and p shell.Comment: 7 pages, 3 figures, Accepted for publication in Phys. Rev. Let
Flexible control of the Peierls transition in metallic C polymers
The metal-semiconductor transition of peanut-shaped fullerene (C)
polymers is clarified by considering the electron-phonon coupling in the uneven
structure of the polymers. We established a theory that accounts for the
transition temperature reported in a recent experiment and also suggests
that is considerably lowered by electron doping or prolonged irradiation
during synthesis. The decrease in is an appealing phenomenon with regard
to realizing high-conductivity C-based nanowires even at low
temperatures.Comment: 3 pages, 3 figure
- …