4 research outputs found

    Mini-Review Mengenai Pemanfaatan Material Berbasis Polimer Koordinasi Berpori untuk Penyimpanan Hidrogen

    Get PDF
    This review aims to summarize the various types of Metal-Organic Frameworks (MOFs) and their utilization for hydrogen storage. MOFs have high surface area, flexibility, good stability and tunability, various active sites, and abundant raw materials. These characteristics make MOFs worthy of being considered as a new material in hydrogen storage applications. The potential for using MOFs is very broad because its properties can be determined from the choice of metal and linker. Hydrogen gas storage commonly requires high pressure tanks whereas in liquid form, it requires cryogenic temperatures due to its very low boiling point, the challenge is to synthesize MOF with high hydrogen adsorption capacity under mild conditions. Moreover, it is crucial to learn about the relationship among the pore volume and surface area of MOFs, physisorption of hydrogen, and adsorption condition

    Novel Metal Coordination Complexes Based on 4-Aminophenol: Spectroscopic Analysis and Antibacterial Test

    Get PDF
    The aims of this research are to synthesize and determine the formula, characteristics, and complex structure of Cu(II) and Co(II) with 4-aminophenol and to investigate their antibacterial activity. The complexes were synthesized by refluxing a solution of CuSO4路5H2O and CoSO4路7H2O, respectively, with 4-aminophenol in methanol for 1聽h. The products were characterized using UV-Vis spectroscopy, atomic absorption spectroscopy, thermal analysis, conductivity, FTIR, and magnetic moment. The formation of the complex was indicated by shifting of maximum wavelength of the metal solution toward shorter, i.e., 817聽 to 421聽nm for Cu(II) and 566聽 to 450聽nm for Co(II). From the characterization, the proposed formulas of the complexes are [Cu(4-aminophenol)4]SO4 and [Co(4-aminophenol)4(H2O)2]SO4路5H2O forming square planar and octahedral geometry, respectively. Both complexes are paramagnetic with negligible antibacterial activity against Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and Pseudomonas aeruginosa

    Mini Review: Citrus sinensis Sebagai Bioreduktor Dalam Green Synthesis Nanopartikel

    Get PDF
    Green synthesis is an eco-friendly approach that provides a viable alternative to traditional physical and chemical methods for the production of nanoparticles. This technique employs non-toxic and safe materials, such as plants, microorganisms, algae, bacteria, yeast, and fungi, to generate stable and less toxic nanoparticles. Citrus sinensis, commonly known as sweet orange, is a plant that contains various active compounds. These bioactive compounds can be extracted and used as bioreductants in green synthesis of nanoparticles. This mini review aimed to provide an overview of the current state of research on the utilization of Citrus sinensis as a bioreductant in the production of nanoparticles. A systematic search strategy was employed to identify research articles that met the criteria of discussing green synthesis of nanoparticles with Citrus sinensis as a bioreductant. The nanoparticles produced using Citrus sinensis extract can be either metal nanoparticles or metal oxide nanoparticles. The review highlights the distribution of nanoparticles produced with Citrus sinensis extract, their applications, and the extraction process of Citrus sinensis commonly employed in green synthesis of nanoparticles. Hopefully this review serves as a useful reference for researchers and practitioners who are interested in employing the Citrus sinensis plant as a bioreductant in the green synthesis of nanoparticles
    corecore