276 research outputs found
Robust Secure Transmission in MISO Channels Based on Worst-Case Optimization
This paper studies robust transmission schemes for multiple-input
single-output (MISO) wiretap channels. Both the cases of direct transmission
and cooperative jamming with a helper are investigated with imperfect channel
state information (CSI) for the eavesdropper links. Robust transmit covariance
matrices are obtained based on worst-case secrecy rate maximization, under both
individual and global power constraints. For the case of an individual power
constraint, we show that the non-convex maximin optimization problem can be
transformed into a quasiconvex problem that can be efficiently solved with
existing methods. For a global power constraint, the joint optimization of the
transmit covariance matrices and power allocation between the source and the
helper is studied via geometric programming. We also study the robust wiretap
transmission problem for the case with a quality-of-service constraint at the
legitimate receiver. Numerical results show the advantage of the proposed
robust design. In particular, for the global power constraint scenario,
although cooperative jamming is not necessary for optimal transmission with
perfect eavesdropper's CSI, we show that robust jamming support can increase
the worst-case secrecy rate and lower the signal to interference-plus-noise
ratio at Eve in the presence of channel mismatches between the transmitters and
the eavesdropper.Comment: 28 pages, 5 figure
mmWave Massive MIMO with Simple RF and Appropriate DSP
There is considerable interest in the combined use of millimeter-wave
(mmwave) frequencies and arrays of massive numbers of antennas (massive MIMO)
for next-generation wireless communications systems. A symbiotic relationship
exists between these two factors: mmwave frequencies allow for densely packed
antenna arrays, and hence massive MIMO can be achieved with a small form
factor; low per-antenna SNR and shadowing can be overcome with a large array
gain; steering narrow beams or nulls with a large array is a good match for the
line-of-sight (LOS) or near-LOS mmwave propagation environments, etc.. However,
the cost and power consumption for standard implementations of massive MIMO
arrays at mmwave frequencies is a significant drawback to rapid adoption and
deployment. In this paper, we examine a number of possible approaches to reduce
cost and power at both the basestation and user terminal, making up for it with
signal processing and additional (cheap) antennas. These approaches include
lowresolution Analog-to-Digital Converters (ADCs), wireless local oscillator
distribution networks, spatial multiplexing and multistreaming instead of
higher-order modulation etc.. We will examine the potential of these approaches
in making mmwave massive MIMO a reality and discuss the requirements in terms
of digital signal processing (DSP).Comment: published in Asilomar 201
Jamming Games in the MIMO Wiretap Channel With an Active Eavesdropper
This paper investigates reliable and covert transmission strategies in a
multiple-input multiple-output (MIMO) wiretap channel with a transmitter,
receiver and an adversarial wiretapper, each equipped with multiple antennas.
In a departure from existing work, the wiretapper possesses a novel capability
to act either as a passive eavesdropper or as an active jammer, under a
half-duplex constraint. The transmitter therefore faces a choice between
allocating all of its power for data, or broadcasting artificial interference
along with the information signal in an attempt to jam the eavesdropper
(assuming its instantaneous channel state is unknown). To examine the resulting
trade-offs for the legitimate transmitter and the adversary, we model their
interactions as a two-person zero-sum game with the ergodic MIMO secrecy rate
as the payoff function. We first examine conditions for the existence of
pure-strategy Nash equilibria (NE) and the structure of mixed-strategy NE for
the strategic form of the game.We then derive equilibrium strategies for the
extensive form of the game where players move sequentially under scenarios of
perfect and imperfect information. Finally, numerical simulations are presented
to examine the equilibrium outcomes of the various scenarios considered.Comment: 27 pages, 8 figures. To appear, IEEE Transactions on Signal
Processin
Spectral Efficiency of Mixed-ADC Massive MIMO
We study the spectral efficiency (SE) of a mixed-ADC massive MIMO system in
which K single-antenna users communicate with a base station (BS) equipped with
M antennas connected to N high-resolution ADCs and M-N one-bit ADCs. This
architecture has been proposed as an approach for realizing massive MIMO
systems with reasonable power consumption. First, we investigate the
effectiveness of mixed-ADC architectures in overcoming the channel estimation
error caused by coarse quantization. For the channel estimation phase, we study
to what extent one can combat the SE loss by exploiting just N << M pairs of
high-resolution ADCs. We extend the round-robin training scheme for mixed-ADC
systems to include both high-resolution and one-bit quantized observations.
Then, we analyze the impact of the resulting channel estimation error in the
data detection phase. We consider random high-resolution ADC assignment and
also analyze a simple antenna selection scheme to increase the SE. Analytical
expressions are derived for the SE for maximum ratio combining (MRC) and
numerical results are presented for zero-forcing (ZF) detection. Performance
comparisons are made against systems with uniform ADC resolution and against
mixed-ADC systems without round-robin training to illustrate under what
conditions each approach provides the greatest benefit.Comment: To appear in IEEE Transactions on Signal Processin
- …