81 research outputs found

    The Land and Water Integration Decision Support System

    Get PDF
    Integration of data and component models describing habitat-based land use, non-point source pollutants transport, and water and soil quality forms the decision support development processes to assist policy makers in examining management options for dealing with the impacts of land use on water for agricultural issues in Canada. The land and water integration decision support system emphasizes on scale consistency, scenario gaming and testing, pollutant source tracing and optimal solutions. Examples of a watershed-based decision support system on water quality impact were presented as part of an assessment for the evaluation of best management practice options for future agricultural intensification scenario

    Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan 1995-2004

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza virus (AIV) infections have caused heavy economic losses to the poultry industry in Pakistan as well as numerous other regions worldwide. The first introduction of H7N3 AIV to Pakistan occurred during 1995, since then H7N3, H9N2 and H5N1 AIVs have each been sporadically isolated. This report evaluates the genetic origin of the H7N3 viruses from Pakistan collected 1995-2004 and how they disseminated within the country. To accomplish this we produced whole genome sequences for 6 H7N3 viruses and data for the HA and NA genes of an additional 7 isolates. All available sequence from H7N3 AIV from Pakistan was included in the analysis.</p> <p>Results</p> <p>Phylogenetic analysis revealed that there were two introductions of H7 into Pakistan and one N3 introduction. Only one of the H7 introductions appears to have become established in poultry in Pakistan, while the other was isolated from two separate outbreaks 6 years apart. The data also shows that reassortment has occurred between H7N3 and H9N2 viruses in the field, likely during co-infection of poultry. Also, with the exception of these few reassortant isolates, all 8 genes in the predominant H7N3 virus lineage have evolved to be phylogenetically distinct.</p> <p>Conclusions</p> <p>Although rigorous control measures have been implemented in commercial poultry in Pakistan, AIV is sporadically transmitted to poultry and among the different poultry industry compartments (broilers, broiler breeders, table egg layers). Since there is one primary H7 lineage which persists and that has reassorted with the H9N2 AIV in poultry, it suggests that there is a reservoir with some link commercial poultry. On a general level, this offers insight into the molecular ecology of AIV in poultry where the virus has persisted despite vaccination and biosecurity. This data also illustrates the importance of sustained surveillance for AIVs in poultry.</p

    Influenza A Virus Infections in Land Birds, People’s Republic of China

    Get PDF
    Water birds are considered the reservoir for avian influenza viruses. We examined this assumption by sampling and real-time reverse transcription–PCR testing of 939 Asian land birds of 153 species. Influenza A infection was found, particularly among migratory species. Surveillance programs for monitoring spread of these viruses need to be redesigned

    Efficacy of recombinant Marek’s disease virus vectored vaccines with computationally optimized broadly reactive antigen (COBRA) hemagglutinin insert against genetically diverse H5 high pathogenicity avian influenza viruses

    Get PDF
    The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.info:eu-repo/semantics/publishedVersio

    Homo- and Heterosubtypic Low Pathogenic Avian Influenza Exposure on H5N1 Highly Pathogenic Avian Influenza Virus Infection in Wood Ducks (Aix sponsa)

    Get PDF
    Wild birds in the Orders Anseriformes and Charadriiformes are the natural reservoirs for avian influenza (AI) viruses. Although they are often infected with multiple AI viruses, the significance and extent of acquired immunity in these populations is not understood. Pre-existing immunity to AI virus has been shown to modulate the outcome of a highly pathogenic avian influenza (HPAI) virus infection in multiple domestic avian species, but few studies have addressed this effect in wild birds. In this study, the effect of pre-exposure to homosubtypic (homologous hemagglutinin) and heterosubtypic (heterologous hemagglutinin) low pathogenic avian influenza (LPAI) viruses on the outcome of a H5N1 HPAI virus infection in wood ducks (Aix sponsa) was evaluated. Pre-exposure of wood ducks to different LPAI viruses did not prevent infection with H5N1 HPAI virus, but did increase survival associated with H5N1 HPAI virus infection. The magnitude of this effect on the outcome of the H5N1 HPAI virus infection varied between different LPAI viruses, and was associated both with efficiency of LPAI viral replication in wood ducks and the development of a detectable humoral immune response. These observations suggest that in naturally occurring outbreaks of H5N1 HPAI, birds with pre-existing immunity to homologous hemagglutinin or neuraminidase subtypes of AI virus may either survive H5N1 HPAI virus infection or live longer than naïve birds and, consequently, could pose a greater risk for contributing to viral transmission and dissemination. The mechanisms responsible for this protection and/or the duration of this immunity remain unknown. The results of this study are important for surveillance efforts and help clarify epidemiological data from outbreaks of H5N1 HPAI virus in wild bird populations

    Single Assay for Simultaneous Detection and Differential Identification of Human and Avian Influenza Virus Types, Subtypes, and Emergent Variants

    Get PDF
    For more than four decades the cause of most type A influenza virus infections of humans has been attributed to only two viral subtypes, A/H1N1 or A/H3N2. In contrast, avian and other vertebrate species are a reservoir of type A influenza virus genome diversity, hosting strains representing at least 120 of 144 combinations of 16 viral hemagglutinin and 9 viral neuraminidase subtypes. Viral genome segment reassortments and mutations emerging within this reservoir may spawn new influenza virus strains as imminent epidemic or pandemic threats to human health and poultry production. Traditional methods to detect and differentiate influenza virus subtypes are either time-consuming and labor-intensive (culture-based) or remarkably insensitive (antibody-based). Molecular diagnostic assays based upon reverse transcriptase-polymerase chain reaction (RT-PCR) have short assay cycle time, and high analytical sensitivity and specificity. However, none of these diagnostic tests determine viral gene nucleotide sequences to distinguish strains and variants of a detected pathogen from one specimen to the next. Decision-quality, strain- and variant-specific pathogen gene sequence information may be critical for public health, infection control, surveillance, epidemiology, or medical/veterinary treatment planning. The Resequencing Pathogen Microarray (RPM-Flu) is a robust, highly multiplexed and target gene sequencing-based alternative to both traditional culture- or biomarker-based diagnostic tests. RPM-Flu is a single, simultaneous differential diagnostic assay for all subtype combinations of type A influenza viruses and for 30 other viral and bacterial pathogens that may cause influenza-like illness. These other pathogen targets of RPM-Flu may co-infect and compound the morbidity and/or mortality of patients with influenza. The informative specificity of a single RPM-Flu test represents specimen-specific viral gene sequences as determinants of virus type, A/HN subtype, virulence, host-range, and resistance to antiviral agents

    The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds

    Get PDF
    We surveyed the genetic diversity among avian influenza virus (AIV) in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA) and neuraminidase (NA) subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient “genome constellations,” continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses

    Influenza-A Viruses in Ducks in Northwestern Minnesota: Fine Scale Spatial and Temporal Variation in Prevalence and Subtype Diversity

    Get PDF
    Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 AIV subtypes during 2007 and 31 during 2008. Ten hemagglutinin (HA) subtypes were detected each year (i.e., H1, 3–8, and 10–12 during 2007; H1-8, 10 and 11 during 2008). All neuraminidase (NA) subtypes were detected during each year of the study. Subtype diversity varied between years and increased with prevalence into September. Predominant subtypes during 2007 (comprising ≥5% of subtype diversity) included H1N1, H3N6, H3N8, H4N6, H7N3, H10N7, and H11N9. Predominant subtypes during 2008 included H3N6, H3N8, H4N6, H4N8, H6N1, and H10N7. Additionally, within each HA subtype, the same predominant HA/NA subtype combinations were detected each year and included H1N1, H3N8, H4N6, H5N2, H6N1, H7N3, H8N4, H10N7, and H11N9. The H2N3 and H12N5 viruses also predominated within the H2 and H12 subtypes, respectively, but only were detected during a single year (H2 and H12 viruses were not detected during 2007 and 2008, respectively). Mallards were the predominant species sampled (63.7% of the total), and 531 AIV were isolated from this species (80.5% of the total isolates). Mallard data collected during both years adequately described the observed temporal and spatial prevalence from the total sample and also adequately represented subtype diversity. Juvenile mallards also were adequate in describing the temporal and spatial prevalence of AIV as well as subtype diversity

    Functional vascularized lung grafts for lung bioengineering

    Get PDF
    End-stage lung disease is the third leading cause of death worldwide, accounting for 400,000 deaths per year in the United States alone. To reduce the morbidity and mortality associated with lung disease, new therapeutic strategies aimed at promoting lung repair and increasing the number of donor lungs available for transplantation are being explored. Because of the extreme complexity of this organ, previous attempts at bioengineering functional lungs from fully decellularized or synthetic scaffolds lacking functional vasculature have been largely unsuccessful. An intact vascular network is critical not only for maintaining the blood-gas barrier and allowing for proper graft function but also for supporting the regenerative cells. We therefore developed an airway-specific approach to removing the pulmonary epithelium, while maintaining the viability and function of the vascular endothelium, using a rat model. The resulting vascularized lung grafts supported the attachment and growth of human adult pulmonary cells and stem cell–derived lung-specified epithelial cells. We propose that de-epithelialization of the lung with preservation of intact vasculature could facilitate cell therapy of pulmonary epithelium and enable bioengineering of functional lungs for transplantation
    corecore