2,308 research outputs found

    Preparation of multiblock copolymers via step-wise addition of l-lactide and trimethylene carbonate.

    Get PDF
    Poly(l-lactide) (PLA) is a bioderived and biodegradable polymer that has limited applications due to its hard and brittle nature. Incorporation of 1,3-trimethylene carbonate into PLA, in a block copolymer fashion, improves the mechanical properties, while retaining the biodegradability of the polymer, and broadens its range of applications. However, the preparation of 1,3-trimethylene carbonate (TMC)/l-lactide (LA) copolymers beyond diblock and triblock structures has not been reported, with explanations focusing mostly on thermodynamic reasons that impede the copolymerization of TMC after lactide. We discuss the preparation of multiblock copolymers via the ring opening polymerization (ROP) of LA and TMC, in a step-wise addition, by a ferrocene-chelating heteroscorpionate zinc complex, {[fc(PPh2)(BH[(3,5-Me)2pz]2)]Zn(μ-OCH2Ph)}2 ([(fcP,B)Zn(μ-OCH2Ph)]2, fc = 1,1'-ferrocenediyl, pz = pyrazole). The synthesis of up to pentablock copolymers, from various combinations of LA and TMC, was accomplished and the physical, thermal, and mechanical properties of the resulting copolymers evaluated

    Lynx X-Ray Observatory: An Overview

    Get PDF
    Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget

    How the field of infectious diseases can leverage digital strategy and social media use during a pandemic

    Get PDF
    Rapid information dissemination is critical in a world changing rapidly due to global threats. Ubiquitous internet access has created new methods of information dissemination that are rapid, far-reaching, and universally accessible. However, inaccuracies may accompany rapid information dissemination, and rigorous evaluation of primary data through various forms of peer review is crucial. In an era in which high-quality information can save lives, it is critical that infectious diseases specialists are well versed in digital strategy to effectively disseminate information to colleagues and the community and diminish voices spreading misinformation. In this study, we review how social media can be used for rapid dissemination of quality information, benefits and pitfalls of social media use, and general recommendations for developing a digital strategy as an infectious diseases specialist. We will describe how the Infectious Diseases Society of America has leveraged digital strategy and social media and how individuals can amplify these resources to disseminate information, provide clinical knowledge, community guidance, and build their own person brand. We conclude in providing guidance to infectious diseases specialists in aiming to build and preserve public trust, consider their audience and specific goals, and use social media to highlight the value of the field of infectious diseases

    The Association between Mental Health and Violence among a Nationally Representative Sample of College Students from the United States

    Get PDF
    Objectives Recent violent attacks on college campuses in the United States have sparked discussions regarding the prevalence of psychiatric disorders and the perpetration of violence among college students. While previous studies have examined the potential association between mental health problems and violent behavior, the overall pattern of findings flowing from this literature remain mixed and no previous studies have examined such associations among college students. Methods The current study makes use of a nationally representative sample of 3,929 college students from the National Epidemiologic Study on Alcohol and Related Conditions (NESARC) to examine the prevalence of seven violent behaviors and 19 psychiatric disorder diagnoses tapping mood, anxiety, personality, and substance use disorders. Associations between individual and composite psychiatric disorder diagnoses and violent behaviors were also examined. Additional analyses were adjusted for the comorbidity of multiple psychiatric diagnoses. Results The results revealed that college students were less likely to have engaged in violent behavior relative to the non-student sample, but a substantial portion of college students had engaged in violent behavior. Age- and sex-standardized prevalence rates indicated that more than 21% of college students reported at least one violent act. In addition, more than 36% of college students had at least one diagnosable psychiatric disorder. Finally, the prevalence of one or more psychiatric disorders significantly increased the odds of violent behavior within the college student sample. Conclusions These findings indicate that violence and psychiatric disorders are prevalent on college campuses in the United States, though perhaps less so than in the general population. In addition, college students who have diagnosable psychiatric disorders are significantly more likely to engage in various forms of violent behavior

    A trematode parasite derived growth factor binds and exerts influences on host immune functions via host cytokine receptor complexes

    Get PDF
    The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allow- ing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF) superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL)-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory recep- tor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is depen- dent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs) in their evasion of antibody- dependent cell cytotoxicity (ADCC) by reducing the NO response of macrophages—again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for damp- ened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow for a reduced effector response targetingjuvenile parasites which we demonstrate extends to an abrogation of the ADCC response. Thus suggesting that FhTLM is a stage specific evasion molecule that utilises host cytokine receptors. These findings are the first to clearly demonstrate the interaction of a helminth cytokine with a host receptor complex resulting in immune modifications that facilitate the non-protective chronic immune response which is characteristic of F. hepatica infection

    Testing the activitystat hypothesis: a randomised controlled trial protocol

    Get PDF
    Background: The activitystat hypothesis proposes that when physical activity or energy expenditure is increased or decreased in one domain, there will be a compensatory change in another domain to maintain an overall, stable level of physical activity or energy expenditure. To date, there has been no experimental study primarily designed to test the activitystat hypothesis in adults. The aim of this trial is to determine the effect of two different imposed exercise loads on total daily energy expenditure and physical activity levels. Methods. This study will be a randomised, multi-arm, parallel controlled trial. Insufficiently active adults (as determined by the Active Australia survey) aged 18-60 years old will be recruited for this study (n=146). Participants must also satisfy the Sports Medicine Australia Pre-Exercise Screening System and must weigh less than 150 kg. Participants will be randomly assigned to one of three groups using a computer-generated allocation sequence. Participants in the Moderate exercise group will receive an additional 150 minutes of moderate to vigorous physical activity per week for six weeks, and those in the Extensive exercise group will receive an additional 300 minutes of moderate to vigorous physical activity per week for six weeks. Exercise targets will be accumulated through both group and individual exercise sessions monitored by heart rate telemetry. Control participants will not be given any instructions regarding lifestyle. The primary outcome measures are activity energy expenditure (doubly labeled water) and physical activity (accelerometry). Secondary measures will include resting metabolic rate via indirect calorimetry, use of time, maximal oxygen consumption and several anthropometric and physiological measures. Outcome measures will be conducted at baseline (zero weeks), mid- and end-intervention (three and six weeks) with three (12 weeks) and six month (24 week) follow-up. All assessors will be blinded to group allocation. Discussion. This protocol has been specifically designed to test the activitystat hypothesis while taking into account the key conceptual and methodological considerations of testing a biologically regulated homeostatic feedback loop. Results of this study will be an important addition to the growing literature and debate concerning the possible existence of an activitystat. Trial registration. Australian New Zealand Clinical Trials Registry ACTRN12610000248066

    Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress Using Profluorescent Nitroxides

    Get PDF
    A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration

    Lynx Mission Concept Status

    Get PDF
    Lynx is a concept under study for prioritization in the 2020 Astrophysics Decadal Survey. Providing orders of magnitude increase in sensitivity over Chandra, Lynx will examine the first black holes and their galaxies, map the large-scale structure and galactic halos, and shed new light on the environments of young stars and their planetary systems. In order to meet the Lynx science goals, the telescope consists of a high-angular resolution optical assembly complemented by an instrument suite that may include a High Definition X-ray Imager, X-ray Microcalorimeter and an X-ray Grating Spectrometer. The telescope is integrated onto the spacecraft to form a comprehensive observatory concept. Progress on the formulation of the Lynx telescope and observatory configuration is reported in this paper
    corecore