6,495 research outputs found
A fit to the simultaneous broadband spectrum of Cygnus X-1 using the transition disk model
We have used the transition disk model to fit the simultaneous broad band
( keV) spectrum of Cygnus X-1 from OSSE and Ginga observations. In this
model, the spectrum is produced by saturated Comptonization within the inner
region of the accretion disk, where the temperature varies rapidly with radius.
In an earlier attempt, we demonstrated the viability of this model by fitting
the data from EXOSAT, XMPC balloon and OSSE observations, though these were not
made simultaneously. Since the source is known to be variable, however, the
results of this fit were not conclusive. In addition, since only once set of
observations was used, the good agreement with the data could have been a
chance occurrence. Here, we improve considerably upon our earlier analysis by
considering four sets of simultaneous observations of Cygnus X-1, using an
empirical model to obtain the disk temperature profile. The vertical structure
is then obtained using this profile and we show that the analysis is self-
consistent. We demonstrate conclusively that the transition disk spectrum is a
better fit to the observations than that predicted by the soft photon
Comptonization model. Since the temperature profile is obtained by fitting the
data, the unknown viscosity mechanism need not be specified. The disk structure
can then be used to infer the viscosity parameter , which appears to
vary with radius and luminosity. This behavior can be understood if
depends intrinsically on the local parameters such as density, height and
temperature. However, due to uncertainties in the radiative transfer,
quantitative statements regarding the variation of cannot yet be made.Comment: 8 figures. uses aasms4.sty, accepted by ApJ (Mar 98
Hardness of Graph Pricing through Generalized Max-Dicut
The Graph Pricing problem is among the fundamental problems whose
approximability is not well-understood. While there is a simple combinatorial
1/4-approximation algorithm, the best hardness result remains at 1/2 assuming
the Unique Games Conjecture (UGC). We show that it is NP-hard to approximate
within a factor better than 1/4 under the UGC, so that the simple combinatorial
algorithm might be the best possible. We also prove that for any , there exists such that the integrality gap of
-rounds of the Sherali-Adams hierarchy of linear programming for
Graph Pricing is at most 1/2 + .
This work is based on the effort to view the Graph Pricing problem as a
Constraint Satisfaction Problem (CSP) simpler than the standard and complicated
formulation. We propose the problem called Generalized Max-Dicut(), which
has a domain size for every . Generalized Max-Dicut(1) is
well-known Max-Dicut. There is an approximation-preserving reduction from
Generalized Max-Dicut on directed acyclic graphs (DAGs) to Graph Pricing, and
both our results are achieved through this reduction. Besides its connection to
Graph Pricing, the hardness of Generalized Max-Dicut is interesting in its own
right since in most arity two CSPs studied in the literature, SDP-based
algorithms perform better than LP-based or combinatorial algorithms --- for
this arity two CSP, a simple combinatorial algorithm does the best.Comment: 28 page
Chaotic Dynamics in Optimal Monetary Policy
There is by now a large consensus in modern monetary policy. This consensus
has been built upon a dynamic general equilibrium model of optimal monetary
policy as developed by, e.g., Goodfriend and King (1997), Clarida et al.
(1999), Svensson (1999) and Woodford (2003). In this paper we extend the
standard optimal monetary policy model by introducing nonlinearity into the
Phillips curve. Under the specific form of nonlinearity proposed in our paper
(which allows for convexity and concavity and secures closed form solutions),
we show that the introduction of a nonlinear Phillips curve into the structure
of the standard model in a discrete time and deterministic framework produces
radical changes to the major conclusions regarding stability and the efficiency
of monetary policy. We emphasize the following main results: (i) instead of a
unique fixed point we end up with multiple equilibria; (ii) instead of
saddle--path stability, for different sets of parameter values we may have
saddle stability, totally unstable equilibria and chaotic attractors; (iii) for
certain degrees of convexity and/or concavity of the Phillips curve, where
endogenous fluctuations arise, one is able to encounter various results that
seem intuitively correct. Firstly, when the Central Bank pays attention
essentially to inflation targeting, the inflation rate has a lower mean and is
less volatile; secondly, when the degree of price stickiness is high, the
inflation rate displays a larger mean and higher volatility (but this is
sensitive to the values given to the parameters of the model); and thirdly, the
higher the target value of the output gap chosen by the Central Bank, the
higher is the inflation rate and its volatility.Comment: 11 page
A comparative study of super- and highly-deformed bands in the A ~ 60 mass region
Super- and highly-deformed rotational bands in the A ~ 60 mass region are
studied within cranked relativistic mean field theory and the
configuration-dependent shell-correction approach based on the cranked Nilsson
potential. Both approaches describe the experimental data well. Low values of
the dynamic moments of inertia J^(2) compared with the kinematic moments of
inertia J^(1) seen both in experiment and in calculations at high rotational
frequencies indicate the high energy cost to build the states at high spin and
reflect the limited angular momentum content in these configurations.Comment: 11 pages, 4 PostScript figures, Latex, uses 'epsf', submitted to
Phys. Lett.
Money in monetary policy design: monetary cross-checking in the New-Keynesian model
In the New-Keynesian model, optimal interest rate policy under uncertainty is formulated without reference to monetary aggregates as long as certain standard assumptions on the distributions of unobservables are satisfied. The model has been criticized for failing to explain common trends in money growth and inflation, and that therefore money should be used as a cross-check in policy formulation (see Lucas (2007)). We show that the New-Keynesian model can explain such trends if one allows for the possibility of persistent central bank misperceptions. Such misperceptions motivate the search for policies that include additional robustness checks. In earlier work, we proposed an interest rate rule that is near-optimal in normal times but includes a cross-check with monetary information. In case of unusual monetary trends, interest rates are adjusted. In this paper, we show in detail how to derive the appropriate magnitude of the interest rate adjustment following a significant cross-check with monetary information, when the New-Keynesian model is the central bankâs preferred model. The cross-check is shown to be effective in offsetting persistent deviations of inflation due to central bank misperceptions. Keywords: Monetary Policy, New-Keynesian Model, Money, Quantity Theory, European Central Bank, Policy Under Uncertaint
Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment
We present the main results from the second model intercomparison within the GEWEX (Global Energy andWater cycle EXperiment) Atmospheric Boundary Layer Study (GABLS). The target is to examine the diurnal cycle over land in todayâs numerical weather prediction and climate models for operational and research purposes. The set-up of the case is based on observations taken during the Cooperative Atmosphere-Surface Exchange Study-1999 (CASES-99), which was held in Kansas, USA in the early autumn with a strong diurnal cycle with no clouds present. The models are forced with a constant geostrophic wind, prescribed surface temperature and large-scale divergence. Results from 30 different model simulations and one large-eddy simulation (LES) are analyzed and compared with observations. Even though the surface temperature is prescribed, the models give variable near-surface air temperatures. This, in turn, gives rise to differences in low-level stability affecting the turbulence and the turbulent heat fluxes. The increase in modelled upward sensible heat flux during the morning transition is typically too weak and the growth of the convective boundary layer before noon is too slow. This is related to weak modelled nearsurface winds during the morning hours. The agreement between the models, the LES and observations is the best during the late afternoon. From this intercomparison study, we find that modelling the diurnal cycle is still a big challenge. For the convective part of the diurnal cycle, some of the first-order schemes perform somewhat better while the turbulent kinetic energy (TKE) schemes tend to be slightly better during nighttime conditions. Finer vertical resolution tends to improve results to some extent, but is certainly not the solution to all the deficiencies identifie
Electronic structure and optical properties of ZnX (X=O, S, Se, Te)
Electronic band structure and optical properties of zinc monochalcogenides
with zinc-blende- and wurtzite-type structures were studied using the ab initio
density functional method within the LDA, GGA, and LDA+U approaches.
Calculations of the optical spectra have been performed for the energy range
0-20 eV, with and without including spin-orbit coupling. Reflectivity,
absorption and extinction coefficients, and refractive index have been computed
from the imaginary part of the dielectric function using the Kramers--Kronig
transformations. A rigid shift of the calculated optical spectra is found to
provide a good first approximation to reproduce experimental observations for
almost all the zinc monochalcogenide phases considered. By inspection of the
calculated and experimentally determined band-gap values for the zinc
monochalcogenide series, the band gap of ZnO with zinc-blende structure has
been estimated.Comment: 17 pages, 10 figure
- âŠ