1,762 research outputs found

    Iterative Estimation of Rigid-Body Transformations: Application to Robust Object Tracking and Iterative Closest Point

    Get PDF
    Closed-form solutions are traditionally used in computer vision for estimating rigid body transformations. Here we suggest an iterative solution for estimating rigid body transformations and prove its global convergence. We show that for a number of applications involving repeated estimations of rigid body transformations, an iterative scheme is preferable to a closed-form solution. We illustrate this experimentally on two applications, 3D object tracking and image registration with Iterative Closest Point. Our results show that for those problems using an iterative and continuous estimation process is more robust than using many independent closed-form estimation

    Modular analysis of gene expression data with R

    Get PDF
    Summary: Large sets of data, such as expression profiles from many samples, require analytic tools to reduce their complexity. The Iterative Signature Algorithm (ISA) is a biclustering algorithm. It was designed to decompose a large set of data into so-called ‘modules'. In the context of gene expression data, these modules consist of subsets of genes that exhibit a coherent expression profile only over a subset of microarray experiments. Genes and arrays may be attributed to multiple modules and the level of required coherence can be varied resulting in different ‘resolutions' of the modular mapping. In this short note, we introduce two BioConductor software packages written in GNU R: The isa2 package includes an optimized implementation of the ISA and the eisa package provides a convenient interface to run the ISA, visualize its output and put the biclusters into biological context. Potential users of these packages are all R and BioConductor users dealing with tabular (e.g. gene expression) data. Availability: http://www.unil.ch/cbg/ISA Contact: [email protected]

    Correcting for the bias due to expression specificity improves the estimation of constrained evolution of expression between mouse and human

    Get PDF
    Motivation: Comparative analyses of gene expression data from different species have become an important component of the study of molecular evolution. Thus methods are needed to estimate evolutionary distances between expression profiles, as well as a neutral reference to estimate selective pressure. Divergence between expression profiles of homologous genes is often calculated with Pearson's or Euclidean distance. Neutral divergence is usually inferred from randomized data. Despite being widely used, neither of these two steps has been well studied. Here, we analyze these methods formally and on real data, highlight their limitations and propose improvements. Results: It has been demonstrated that Pearson's distance, in contrast to Euclidean distance, leads to underestimation of the expression similarity between homologous genes with a conserved uniform pattern of expression. Here, we first extend this study to genes with conserved, but specific pattern of expression. Surprisingly, we find that both Pearson's and Euclidean distances used as a measure of expression similarity between genes depend on the expression specificity of those genes. We also show that the Euclidean distance depends strongly on data normalization. Next, we show that the randomization procedure that is widely used to estimate the rate of neutral evolution is biased when broadly expressed genes are abundant in the data. To overcome this problem, we propose a novel randomization procedure that is unbiased with respect to expression profiles present in the datasets. Applying our method to the mouse and human gene expression data suggests significant gene expression conservation between these species. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    FastEpistasis: a high performance computing solution for quantitative trait epistasis

    Get PDF
    Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously. Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism (SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors. Availability: FastEpistasis is open source and available free of charge only for non-commercial users from http://www.vital-it.ch/software/FastEpistasis Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin

    Detection of koi herpesvirus (KHV) after re-activation in persistently infected common carp (Cyprinus Carpio L.) using non-lethal sampling methods

    Get PDF
    Surviving carp which had recovered from KHVD were kept for approximately eleven additional weeks at 20°C water temperature. To induce KHV re-activation, carp were subjected to netting stress on day 81 after infection and gill swabs and dropping samples were collected daily for investigation by quantitative real-time PCR. An increase of KHV concentration of up to 1000 KHV genomic equivalents was detected over a three day period post-netting from these non-lethally collected samples. A considerable decrease in KHV genomic concentration was observed after day four post-netting. KHV DNA was not detected in samples from persistently infected carp on day 10 after stress induction. The results of this study suggest that KHV DNA is more readily detected, in gill swabs, one to three days after stress induced by capture and netting
    • …
    corecore