2 research outputs found

    Nanoporous Gold Disks Functionalized with Stabilized G‑Quadruplex Moieties for Sensing Small Molecules

    No full text
    We report label-free small molecule sensing on nanoporous gold disks functionalized with stabilized Guanine-quadruplex (G4) moieties using surface-enhanced Raman spectroscopy (SERS). By utilizing the unique G4 topological structure, target molecules can be selectively captured onto nanoporous gold (NPG) disk surfaces via π–π stacking and electrostatic attractions. Together with high-density plasmonic “hot spots” of NPG disks, the captured molecules produce a remarkable SERS signal. Our strategy represents the first example of the detection of foreign molecules conjugated to nondouble helical DNA nanostructures using SERS while providing a new technique for studying the formation and evolution of G4 moieties. The molecular specificity of G4 is known to be controlled by its unit sequence. Without losing generality, we have selected d­(GGT)<sub>7</sub>GG sequence for the sensing of malachite green (MG), a known carcinogen frequently abused illegally in aquaculture. The newly developed technique achieved a lowest detectable concentration at an impressive 50 pM, two orders of magnitude lower than the European Union (EU) regulatory requirement, with high specificity against potential interferents. To demonstrate the translational potential of this technology, we achieved a lowest detectable concentration of 5.0 nM, meeting the EU regulatory requirement, using a portable probe based detection system

    Label-Free Fluorometric Method for Monitoring Conformational Flexibility of Laccase Based on a Selective Laccase Sensor

    No full text
    A facile and selective fluorescence sensor for laccase determination has been proposed depending on the interaction between 3-azidocoumarin and trametes versicolor (Tv) laccase in this paper. The azido group of 3-azidocoumarin that is electron-rich α-nitrogen can directly interact with histidines that coordinate to three copper sites through hydrogen bonds and forms a new complex, which decreases the electron-donating ability of the azido group, leading to enhance the fluorescence intensity of the sensing system. Also, other common proteins have no significant interference for the proposed laccase sensor. Additionally, the proposed fluorescence sensor is extended to demonstrate the conformational flexibility of Tv laccase by the urea denaturant. A good consistency of the results obtained with the presented laccase sensor and CD spectra is performed. Furthermore, the relationship between the catalytic activity and the unfolding percentage of the unfolded Tv laccase through the proposed laccase sensor is also elucidated well
    corecore