17 research outputs found

    Surface Layer Dynamics in Miscible Polymer Blends

    No full text
    In thin film A/B polymer/polymer mixtures, the formation of a layer at the free surface, with average composition that differs from the bulk, due to the preferential segregation of the lower cohesive energy density component, is well understood. While much is also understood about this surface layer formation and growth to date, virtually nothing is known about the surface dynamics of the chains in such mixtures. Questions about the surface chain dynamics in relation to the bulk have remained unanswered. With the use of X-ray photon correlation spectroscopy (XPCS) we show that the dynamics of poly­(vinyl methyl ether) (PVME) chains at the free surface of polystyrene (PS)/PVME thin film mixtures can be orders of magnitude larger than the PVME chains in the bulk. These dynamics manifest from differences between the local compositions of the blend at the free surface and the bulk, as well as film thickness constraints

    Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites

    No full text
    Polymer-grafted nanoparticles with diameter <i>d</i> homogeneously dispersed in entangled polymer melts with varying random coil radius <i>R</i><sub>0</sub>, but fixed entanglement mesh size <i>a</i><sub>e</sub>, are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (<i>d</i> > <i>R</i><sub>0</sub>), where the classical Stokes–Einstein (S–E) equation is known to describe polymer drag on particles, and the noncontinuum regime (<i>d</i> < <i>a</i><sub>e</sub>), in which several recent studies report faster diffusion of particles than expected from continuum S–E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes <i>d</i> ≄ <i>a</i><sub>e</sub> in entangled polymers with varying molecular weight <i>M</i><sub>w</sub> in order to investigate how the transition from noncontinuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO<sub>2</sub> nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle–polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveals a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker <i>M</i><sub>w</sub> dependence for <i>M</i><sub>w</sub> > <i>M</i><sub>e</sub> than expected from S–E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S–E analysis in which motion of particles is assumed to only disturb subchain entangled host segments with sizes comparable to the particle diameter

    Nanorod Mobility within Entangled Wormlike Micelle Solutions

    No full text
    In the semidilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined X-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semidilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counterion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentration is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847−862] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity

    Polymer Film Surface Fluctuation Dynamics in the Limit of Very Dense Branching

    No full text
    The surface fluctuation dynamics of melt films of densely branched comb polystyrene of thickness greater than 55 nm and at temperatures 23–58 °C above the bulk <i>T</i><sub>g</sub> can be rationalized using the hydrodynamic continuum theory (HCT) known to describe melts of unentangled linear and cyclic chains. Film viscosities (η<sub>XPCS</sub>) inferred from fits of the HCT to X-ray photon correlation spectroscopy (XPCS) data are the same as those measured in bulk rheometry (η<sub>bulk</sub>) for three combs. For the comb most like a star polymer and the comb closest to showing bulk entanglement behavior, η<sub>XPCS</sub> > η<sub>bulk</sub>. These discrepancies are much smaller than those seen for less densely branched polystyrenes. We conjecture that the smaller magnitude of η<sub>XPCS</sub> – η<sub>bulk</sub> for the densely grafted combs is due to a lack of interpenetration of the side chains when branching is most dense. Both <i>T</i><sub>g,bulk</sub> and the specific chain architecture play key roles in determining the surface fluctuations

    Dynamics of Surface Fluctuations on Macrocyclic Melts

    No full text
    A hydrodynamic continuum theory (HCT) of thermally stimulated capillary waves describing surface fluctuations of linear polystyrene melts is found to describe surface fluctuations of sufficiently thick films of unentangled cyclic polystyrene. However, for cyclic polystyrene (CPS) films thinner than 10<i>R</i><sub>g</sub>, the surface fluctuations are slower than expected from the HCT universal scaling, revealing a confinement effect active over length scales much larger than <i>R</i><sub>g</sub>. Surface fluctuations of CPS films can be slower than those of films of linear polystyrene analogues, due to differences between the glass transition temperatures, <i>T</i><sub>g</sub>, of the linear and cyclic chains. The temperature dependences of the surface fluctuations match those of bulk viscosities, suggesting that whole chain dynamics dictate the surface height fluctuation dynamics at temperatures 25–60 °C above <i>T</i><sub>g</sub>. When normalized surface relaxation rates of thicker films are plotted as a function of <i>T</i>/<i>T</i><sub>g</sub>, a universal temperature behavior is observed for linear and cyclic chains

    Microscopic Origins of the Nonlinear Behavior of Particle-Filled Rubber Probed with Dynamic Strain XPCS

    No full text
    The underlying microscopic response of filler networks in reinforced rubber to dynamic strain is not well understood due to the experimental difficulty of directly measuring filler network behavior in samples undergoing dynamic strain. This difficulty can be overcome with in situ X-ray photon correlation spectroscopy (XPCS) measurements. The contrast between the silica filler and the rubber matrix for X-ray scattering allows us to isolate the filler network behavior from the overall response of the rubber. This in situ XPCS technique probes the microscopic breakdown and reforming of the filler network structure, which are responsible for the nonlinear dependence of modulus on strain, known in the rubber science community as the Payne effect. These microscopic changes in the filler network structure have consequences for the macroscopic material performance, especially for the fuel efficiency of tire tread compounds. Here, we elucidate the behavior with in situ dynamic strain XPCS experiments on industrially relevant, vulcanized rubbers filled (13 vol %) with novel air-milled silica of ultrahigh-surface area (UHSA) (250 m2/g). The addition of a silane coupling agent to rubber containing this silica causes an unexpected and counterintuitive increase in the Payne effect and decrease in energy dissipation. For this rubber, we observe a nearly two-fold enhancement of the storage modulus and virtually equivalent loss tangent compared to a rubber containing a coupling agent and conventional silica. Interpretation of our in situ XPCS results simultaneously with interpretation of traditional dynamic mechanical analysis (DMA) strain sweep experiments reveals that the debonding or yielding of bridged bound rubber layers is key to understanding the behavior of rubber formulations containing the silane coupling agent and high-surface area silica. These results demonstrate that the combination of XPCS and DMA is a powerful method for unraveling the microscale filler response to strain which dictates the dynamic mechanical properties of reinforced soft matter composites. With this combination of techniques, we have elucidated the great promise of UHSA silica when used in concert with a silane coupling agent in filled rubber. Such composites simultaneously exhibit large moduli and low hysteresis under dynamic strain

    Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles

    No full text
    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. This work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. Particles within highly ordered strings and aggregated systems experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics is diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer

    Structural Dynamics of Strongly Segregated Block Copolymer Electrolytes

    No full text
    Polymer electrolytes are promising materials for high energy density rechargeable batteries. However, they have low ion transport rates and gradually lose electrode adhesion during cycling. These effects are dependent on polymer structure and dynamics. This motivates an investigation of diblock copolymer electrolyte dynamics. Structural and stress relaxations have been measured with X-ray photon correlation spectroscopy (XPCS) and rheology, respectively, as a function of salt concentration and temperature. The polymer electrolyte studied in this work is a mixture of poly­(styrene-<i>b</i>-ethylene oxide), SEO, and lithium bistrifluoromethane­sulfonimide (LiTFSI). Results from XPCS experiments showed hyperdiffusive motion for various lithium salt concentrations and at varying temperatures, which is indicative of soft glassy materials. This behavior is attributed to cooperative dynamics. The decay time was a weak, nonmonotonic function of salt concentration and decreased with increasing temperature, in an Arrhenius fashion. In contrast, the shear modulus decreased with increasing salt concentration and increasing temperature. The entanglement relaxation from rheological measurements followed Vogel–Fulcher–Tammann behavior. The structural decay time was slower than the entanglement relaxation time at temperatures above the glass transition temperature, but they were approximately equal at <i>T</i><sub>g</sub> regardless of salt concentration. This may indicate a fundamental connection between cooperative structural motion and polymer chain motion in this material

    Dynamics of Nanoparticles in Entangled Polymer Solutions

    No full text
    The mean square displacement ⟹<i>r</i><sup>2</sup>⟩ of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (<i>d</i>), relative to characteristic polymer length scales, including the correlation length (Ο), the entanglement mesh size (<i>a</i>), and the radius of gyration (<i>R</i><sub>g</sub>), are investigated. In simple fluids and for polymer solutions in which <i>d</i> ≫ <i>R</i><sub>g</sub>, long-time particle dynamics obey random-walk statistics ⟹<i>r</i><sup>2</sup>⟩:<i>t</i>, with the bulk zero-shear viscosity of the polymer solution determining the frictional resistance to particle motion. In contrast, in polymer solutions with <i>d</i> < <i>R</i><sub>g</sub>, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when <i>d</i> > <i>a</i>, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. We analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions

    Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids

    No full text
    Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily accessible Newtonian flow regime. In these materials, polymer-mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. We propose that hyperdiffusive relaxations in such materials can arise naturally from nonequilibrium or non-Brownian volume fluctuations forced by equilibrium thermal rearrangements of the particle pair orientations corresponding to equilibrated shear modes
    corecore