151 research outputs found

    Modeling And Spatial Analysis Of Change Settlement And Fair Market Land Price Using Markov Chain Model In Banyumanik District

    Get PDF
    Banyumanik District is located on the outskirts of Semarang with very rapid development. Indicated with the many changes in land that occur, due to the construction of settlements and other physical buildings continues to increase. Changes in land use will also be followed by changes in market land prices. These changes will continue in line with the increasing number and activities of the population in carrying out economic, social and cultural life. Most of the studies was conducted to analyze changes in future land use are based on the use of a model. Land use modeling changes is a method or approach that can be used to understand the causes and effects of these dynamic changes. The Multi-Layer Perceptron (MLP) Neural Network and Markov Chain methods are used in this study to determine which locations or areas of land use are vacant land and agriculture has the potential to change into settlements and test the predictive ability that will be produced by the model. The driving factor for land use change as an input model consists of distance to the road, distance to the area experiencing changes in land use, slope, elevation and fair market land prices. This study aims to (1) predict settlement and its changes in Banyumanik District using High Resolution Satellite Image in 2011-2019, (2) build a model of settlement land use change with the Markov Chain methods and (3) projection of Banyumanik District land use in 2028

    Object Oriented Land Use Change Modelling Of Residential Areas (Case Study : Banyumanik Sub-District, Semarang City)

    Get PDF
    Land Use change marked by the shift of land usage to another. Banyumanik Sub-district is an administrative areas in southern part of Semarang City with higher elevation compared to City Center. The increase of tidal flood caused changes the land use of Banyumanik to residential. In this study we try to model the land use change of Banyumanik using Land Use and Land Cover Changes (LULCC) Packages in R. Using land use of 2011, 2013, and 2016 as input, elevation, slope, and distance to road as parameters, and population data for growth analysis. This study consists of firstly, study area extraction from input and rasterization. Secondly change probability model creation and comparation of population changes to residential changes, Lastly, obtaining actual change and the probability models in the form of maps and charts that describes the land use change in the future as probability model. The land use change to residential does not cope the population growth, and resulting a higher population density. We also found a temporal pattern of residential occurance over residential probability, where occurance slightly decreases as the probability rises, but jumps for the highest probability. Between 2011 and 2013, from area of 0.126km2to 0.165km2. And between 2013 to 2016, it also shift from 0.177km2 to 0.286km2. It can be concluded that a general increment also took place to the existing pattern

    KAJIAN EKSTRAKSI UNSUR DALAM IDENTIFIKASI TUTUPAN LAHAN BERBASIS LAYER STACKING INDEKS CITRA (STUDI KASUS : KECAMATAN WEDARIJAKSA, KABUPATEN PATI)

    Get PDF
    Citra satelit terdiri dari nilai piksel yang merupakan rekaman dari pantulan gelombang elektromagnetik dari unsur-unsur yang terdapat di permukaan bumi. Dalam pengolahan citra satelit, gambaran umum dari kondisi-kondisi di permukaan bumi secara tematik dapat diperoleh dalam bentuk indeks citra yang umumnya memiliki rentang antara -1 hingga 1. Pada penelitian ini dilakukan proses ekstraksi unsur dari citra satelit sentinel 2 dengan pendekatan klasifikasi tidak terbimbing. Jika pada umumnya klasifikasi tersebut dilakukan secara langsung dari kanal-kanal citra, maka dalam penelitian ini proses tersebut dilakukan pada hasil layer stacking citra indeks NDWI, CI, dan ARVI dari citra satelit sentinel 2. Penggabungan atau layer stacking pada indeks yang menghasilkan citra multi kanal menunjukkan peningkatan keseragaman pada bagian-bagian tertentu dari citra tersebut. Ditemukan bahwa populasi nilai korelasi spasial tinggi (>0.5) pada kombinasi antara NDWI dan CI adalah yang terbanyak dibandingkan kombinasi antara NDWI dan ARVI maupun antara CI dan ARVI. Hasil klasifikasi dari gabungan indeks secara umum lebih merata dimana kelima kelas memiliki populasi sedangkan pada klasifikasi citra visibel, dari lima kelas yang menjadi pengaturan awal proses pengelompokan, pada area studi hanya terbentuk tiga kelas sebagai keluarannya

    KAJIAN PEMBUATAN ACCURACY MASK CITRA DAN KORELASINYA DENGAN KONDISI TOPOGRAFI

    Get PDF
    Peta dasar dengan skala besar didapatkan salah satunya dengan penegakan kondisi geometrik citra satelit beresolusi tinggi untuk menghilangkan pergeseran pada hasil perekaman yang disebabkan oleh bervariasinya tinggi permukaan bumi. Representasi kualitas geometrik citra dengan nilai RMS bersifat keseluruhan sebagai rerata (means) dengan nilai akurasi masing-masing titik ICP. Representasi ini menunjukkan adanya kemungkinan perbedaan tingkat akurasi dari masing-masing piksel penyusun citra. Penelitian ini ditujukan untuk mengkaji pembuatan geometric accuracy mask dari citra yang dapat digunakan untuk memprediksi kualitas hasil-hasil digitasi dengan penentuan korelasi spasial antara layer kesalahan dengan kondisi topografi area studi sebagai sumber utama kesalahan pergeseran relief. Kesalahan ICP memiliki variasi yang berkisar antara 1.05 hingga 1,83 meter dimana hasil interpolasi IDW dari titik kesalahan menunjukkan nilai sebaran grid yang secara umum memiliki nilai antara titik-titik ICP. Nilai dari piksel yang berada di luar basis antar titik ICP diekstrapolasi dan dapat menunjukkan perubahan yang semakin besar, atau semakin kecil tergantung gradasi dari interpolasi antar titik. Diperoleh pula bahwa terdapat korelasi lokal yang lebih besar antara nilai kesalahan citra dengan nilai ketinggian dibanding terhadap nilai kelerengan

    Analisis Perbandingan Fluktuasi Perubahan Volume Waduk Penjalin Dengan Metode Pemeruman Dan Pengukuran Elevasi Muka Air

    Full text link
    Waduk Penjalin terletak di wilayah Kabupaten Brebes, Provinsi Jawa Tengah, dibangun sekitar tahun 1930 – 1934. Waduk Penjalin hanya dipergunakan untuk memenuhi kebutuhan air irigasi seluas 29.000 Ha. Sumber airnya selain dari Kali Pemali juga berasal dari air hujan yang jatuh di Daerah Aliran Sungai (DAS) Waduk Penjalin dan yang jatuh langsung ke waduk. Curah hujan tahunan rata-rata di daerah ini berkisar antara 2.750 mm. Pemeliharaan Waduk Penjalin belum dilaksanakan secara serius oleh pengelola. Sejak dibangun tahun 1934 hingga sekarang, baru dilakukan dua kali pemeruman untuk mengontrol Perubahan Waduk Penjalin, sehingga Perubahan secara perodik tidak bisa dideteksi. Dengan kata lain, apabila terjadi Perubahan tidak bisa dilakukan tindak lanjut secara berkala. Volume efektif waduk pada awal mula beroperasi sebesar 9,5 juta. Setelah beroperasi selama 76 tahun diperkirakan volume Waduk Penjalin kurang dari 50%, terbukti dari volumenya sudah tidak dapat lagi mengairi irigasi seluas 29.000Ha

    Analisis Nilai Wtp (Willingness to Pay) Untuk Menentukan Nilai Ekonomi Kawasan Wisata Alam Di Kabupaten Semarang Berbasis Sistem Informasi Geografis (Sig) (Studi Kasus, Kecamatan Bandungan , Kecamatan Sumowono, Kecamatan Ungaran Barat)

    Full text link
    Semarang districtis geographically located inYogyakarta-Semarang-Solo tourism traffic lane,consists of 19 subdistricts and 235 villages, its location are strategic, it\u27son the economic growth path across the industrial, agriculture and tourism construction, and it has42 tourism object. The tourist area that are made for the object of research is Umbul Sidomukti, Semirang waterfall, and Seven Angels waterfall, the three of them make the wealth of natural resources as a visited tourism object.This study used aquestionnaire that are derived from BPN with 212 SPT form format for TCM (Travel Cost Method) approach and the 211a form for CVM (Contingent Valuation Method) approach, the information obtained from this form are calculated with a double regression methods that were subsequently used in the calculation of consumer surplus and the willingness to pay on the existence of the regionin order to obtain the total economy value of an area. By using 2010 Quickbird data image and the GPS\u27s data field coordinates, so the total economic value obtained can be visualized into an Economic Value Zone Map (ZNEK Map), Direct Use Value Map and the Existence Value MaP From the research result, the consumer\u27s surplus value of Umbul Sidomukti is Rp. 660.501,- million, the value of willingness to pay is Rp. 200.634,- For the Semirang waterfall, the consumer\u27s surplus value is Rp. 164.350,- the willingness to pay is Rp. 75.801,- and for the Seven Angels waterfall, the consumer\u27s surplus value is Rp. 780.892,- the willingnessto pay is Rp. 99.150,-. The total economic value obtained over the benefits value from the existence of the regional and the regional economic value based on the travel provider function for the Umbul Sidomukti region is Rp. 29.814.200.280,- Semirang waterfall, Rp. 2.385.280.957,- and the Seven Angels waterfall is Rp. 5.214.848.904,

    Pengaruh Variasi Tinggi Terbang Menggunakan Wahana Unmanned Aerial Vehicle (Uav) Quadcopter Dji Phantom 3 Pro Pada Pembuatan Peta Orthofoto (Studi Kasus Kampus Universitas Diponegoro)

    Full text link
    Nowadays, the development technology is significantly fast in mapping, one of them is evolving the mapping technology using Unmanned Aerial Vehicle (UAV). UAV is technology which emerging use for photogrammetry mapping.This research is held on Diponegoro University about Β± 18 hectare. The Sensor which used is digital non metric camera (Sony EXMOR 1/23” 12 Megapixel) and In this reseacrh is given two treatment which is using plane height 80 meters and 100 meters. The processing is using Agisoft Photoscan software. The processing that doing in software which is aligment which process for identify tie points automatically. Camera callibration for determine interior orientation and exterior orientation of camera, determining the control points, making three dimension model, and give the model texture. After the process is done, the next step is observe from two orthophoto which have the different plane height with observe the distant, area, orientation vector, and RMSE which obtained from two orthophoto. From this research obtain that the best accuracy is gotten on plane height 80 meters rather than plane height 100 meters and also from the pix error from plane height 80 meters are amounted 1,52407 pix and plane height 100 meters 2,33035 pix
    • …
    corecore