70 research outputs found
Fast Parameterless Ballistic Launch Point Estimation based on k-NN Search
This paper discusses the problem of estimating a ballistic trajectory and the launch point by using a trajectory similarity search in a database. The major difficulty of this problem is that estimation accuracy is guaranteed only when an identical trajectory exists in the trajectory database (TD). Hence, the TD must comprise an impractically great number of trajectories from various launch points. Authors proposed a simplified trajectory database with a single launch point and a trajectory similarity search algorithm that decomposes trajectory similarity into velocity and position components. These similarities are applied k-NN estimation. Furthermore, they used the iDistance technique to partition the data space of the high-dimensional database for an efficient k-NN search. Authors proved the effectiveness of the proposed algorithm by experiment.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.295
MEMTO: Memory-guided Transformer for Multivariate Time Series Anomaly Detection
Detecting anomalies in real-world multivariate time series data is
challenging due to complex temporal dependencies and inter-variable
correlations. Recently, reconstruction-based deep models have been widely used
to solve the problem. However, these methods still suffer from an
over-generalization issue and fail to deliver consistently high performance. To
address this issue, we propose the MEMTO, a memory-guided Transformer using a
reconstruction-based approach. It is designed to incorporate a novel memory
module that can learn the degree to which each memory item should be updated in
response to the input data. To stabilize the training procedure, we use a
two-phase training paradigm which involves using K-means clustering for
initializing memory items. Additionally, we introduce a bi-dimensional
deviation-based detection criterion that calculates anomaly scores considering
both input space and latent space. We evaluate our proposed method on five
real-world datasets from diverse domains, and it achieves an average anomaly
detection F1-score of 95.74%, significantly outperforming the previous
state-of-the-art methods. We also conduct extensive experiments to empirically
validate the effectiveness of our proposed model's key components
Neighborhood Property based Pattern Selection For Support Vector Machines
Support Vector Machine (SVM) has been spotlighted in the machine learning community thanks to its theoretical soundness and practical performance. When applied to a large data set, however, it requires a large memory and long time for training. To cope with the practical difficulty, we propose a pattern selection algorithm based on neighborhood properties. The idea is to select only the patterns that are likely to be located near the decision boundary. Those patterns are expected to be more informative than the randomly selected patterns. The experimental results provide promising evidence that it is possible to successfully employ the proposed algorithm ahead of SVM training. 1
- …