27 research outputs found

    Development of Folate-Thioglycolate-Gold Nanoconjugates by Using Citric Acid-PEG Branched Polymer for Inhibition of MCF‑7 Cancer Cell Proliferation

    No full text
    Development of folate (FA)-functionalized gold nanoparticles (AuNPs) has greatly increased in recent years due to their potential in cancer treatment. As surface functionalization of polymer-free AuNPs with thiol groups could result in agglomeration and precipitation, AuNPs should be stabilized with an efficient polymer. In this study, citric acid-PEG branched polymer (CPEG) acted as a reducing as well as stabilizing agent in the synthesis of AuNPs. The thiol group of thioglycolic acid (TGA) attached to CPEG-stabilized AuNPs and interacted with the free carboxylic acid group on the surface of TGA-AuNP nanoconjugates. Stable TGA-AuNP nanoconjugates were obtained only with CPEG-stabilized AuNPs and not with citrate-stabilized AuNPs. The carboxylic acid group on the surface of AuNPs was used to attach FA via an EDC/NHS coupling reaction to obtain FA-TGA-AuNP nanoconjugates. In vitro cytotoxicity studies indicated that FA-TGA-AuNPs were not toxic to normal cells up to a concentration of 200 μg/mL. However, FA-TGA-AuNP nanoconjugates effectively inhibited proliferation of MCF-7 cancer cells at a low concentration of 25 μg/mL after 3 days of incubation. The anticancer activity of FA-TGA-AuNPs was enhanced by incorporating the anticancer drug 5-fluorouracil into the nanoconjugates, which exhibited sustained drug release up to 5 days. Hence, the developed biocompatible FA-TGA-AuNPs could be used for specific killing of breast cancer cells

    Biomaterial-Mediated Exogenous Facile Coating of Natural Killer Cells for Enhancing Anticancer Efficacy toward Hepatocellular Carcinoma

    No full text
    Natural killer (NK) cells exhibit a good therapeutic efficacy against various malignant cancer cells. However, the therapeutic efficacy of plain NK cells is relatively low due to inadequate selectivity for cancer cells. Therefore, to enhance the targeting selectivity and anticancer efficacy of NK cells, we have rationally designed a biomaterial-mediated ex vivo surface engineering technique for the membrane decoration of cancer recognition ligands onto NK cells. Our designed lipid conjugate biomaterial contains three major functional moieties: (1) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE) lipid for cell membrane anchoring, (2) polyethylene glycol for intracellular penetration blocker, and (3) lactobionic acid (LBA) for cancer recognition. The biomaterial was successfully applied to NK cell surfaces (LBA-NK) to enhance recognition and anticancer functionalities, especially toward asialoglycoprotein receptor (ASGPR)-overexpressing hepatocellular carcinoma. Highly efficient and homogeneous NK cell surface editing was achieved with a simple coating process while maintaining intrinsic properties of NK cells. LBA-NK cells showed potential ASGPR-mediated tumor cell binding (through LBA-ASGPR interaction) and thereby significantly augmented anticancer efficacies against HepG2 liver cancer cells. Thus, LBA-NK cells can be a novel engineering strategy for the treatment of liver cancers via facilitated immune synapse interactions in comparison with currently available cell therapies

    Metal-Diffusion-Induced Interface Dipole: Correlating Metal Oxide–Organic Chemical Interaction and Interface Electronic States

    No full text
    The effects of metal oxide diffusion on the interface dipole (ID) energy at a metal oxide (SnO2)/organic semiconductor (copper phthalocyanine, CuPc) interface were studied. In situ synchrotron radiation photoelectron spectroscopy and ultraviolet photoemission spectroscopy studies showed that the ID energy for SnO2-on-CuPc (−0.65 eV) was higher by 0.15 eV than that of CuPc-on-SnO2 (−0.50 eV). When SnO2 deposited on a CuPc layer, hot Sn atoms release enough condensation energy to disrupt the weakly bonded CuPc and diffuse through the surface. The diffused Sn atoms made a chemical reaction with nitrogen atoms in CuPc molecules and made organo-metallic compounds, Sn2CuPc, resulting in the generation of gap states at the former lowest unoccupied molecular orbital. This observation explains why the ID and hole injection barrier at SnO2-on-CuPc are larger than those at the CuPc-on-SnO2 interface. Organic light-emitting diodes with a SnO2-on-CuPc interface showed a lower luminous efficiency (2.63 cd/A) than that of the device with the CuPc-on-SnO2 interface (5.26 cd/A), and this result indicates that ID tuning at SnO2–CuPc interfaces by adjusting the metal diffusion can be readily applicable

    Realization of Multiple Synapse Plasticity by Coexistence of Volatile and Nonvolatile Characteristics of Interface Type Memristor

    No full text
    Studies on neuromorphic computing systems are becoming increasingly important in the big-data-processing era as these systems are capable of energy-efficient parallel data processing and can overcome the present limitations owing to the von Neumann bottleneck. The Pt/WOx/ITO resistive random-access memory device can be used to implement versatile synapse functions because it possesses both volatile and nonvolatile characteristics. The gradual increase and decrease in the current of the Pt/WOx/ITO device with its uniform resistance state for endurance and retention enables additional synaptic applications that can be controlled using electric pulses. If the volatile and nonvolatile device properties are set through rehearsal and forgetting processes, the device can emulate various synaptic behaviors, such as potentiation and depression, paired-pulse facilitation, post-tetanic potentiation, image training, Hebbian learning rules, excitatory postsynaptic current, and Pavlov’s test. Furthermore, reservoir computing can be implemented for applications such as pattern generation and recognition. This emphasizes the various applications of future neuromorphic devices, demonstrating the various favorable characteristics of pulse-enhanced Pt/WOx/ITO devices

    Cytotoxicity of Gallium–Indium Liquid Metal in an Aqueous Environment

    No full text
    Eutectic gallium–indium alloy (EGaIn) liquid metal is highly conductive, moldable, and extremely deformable and has attracted significant attention for many applications, ranging from stretchable electronics to drug delivery. Even though EGaIn liquid metal is generally known to have low toxicity, the toxicity of the metal, rather than a salt form of Ga or In, has not been systematically studied yet. In this paper, we investigate the time-dependent concentration of the ions released from EGaIn liquid metal in an aqueous environment and their cytotoxicity to human cells. It is observed that only the Ga ion is dominantly released from EGaIn when no external agitation is applied, whereas the concentration of the In ion drastically increases with sonication. The cytotoxicity study reveals that all human cells tested are viable in the growth media with naturally released EGaIn ions, but the cytotoxicity becomes significant with sonication-induced EGaIn releasates. On the basis of the comparative study with other representative toxic elements, that is, Hg and Cd, it could be concluded that EGaIn is reasonably safe to use in an aqueous environment; however, it should be cautiously handled when any mechanical agitation is applied

    Ex Vivo Surface Decoration of Phenylboronic Acid onto Natural Killer Cells for Sialic Acid-Mediated Versatile Cancer Cell Targeting

    No full text
    Phenylboronic acid (PBA) has been highly acknowledged as a significant cancer recognition moiety in sialic acid-overexpressing cancer cells. In this investigation, lipid-mediated biomaterial integrated PBA molecules onto the surface of natural killer (NK) cells to make a receptor-mediated immune cell therapeutic module. Therefore, a 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-conjugated di–PEG–PBA (DSPEPEG-di(PEG–PBA) biomaterial was synthesized. The DSPEPEG-di(PEG–PBA) biomaterial exhibited a high affinity for sialic acid (SA), confirmed by fluorescence spectroscopy at pH 6.5 and 7.4. DSPEPEG-di(PEG–PBA) was successfully anchored onto NK cell surfaces (PBA-NK), and this biomaterial maintains intrinsic properties such as viability, ligand availability (FasL & TRAIL), and cytokine secretion response to LPS. The anticancer efficacy of PBA-NK cells was evaluated against 2D cancer cells (MDA-MB-231, HepG2, and HCT-116) and 3D tumor spheroids of MDA-MB-231 cells. PBA-NK cells exhibited greatly enhanced anticancer effects against SA-overexpressing cancer cells. Thus, PBA-NK cells represent a new anticancer strategy for cancer immunotherapy

    Unveiling the Potential of HfO<sub>2</sub>/WS<sub>2</sub> Bilayer Films: Robust Analog Switching and Synaptic Emulation for Advanced Memory and Neuromorphic Computing

    No full text
    Nonvolatile memories using two-dimensional materials and high-k oxides have gained attention for their potential to achieve robust analog switching, easy memristive device integration, and low-energy consumption. In this study, we fabricated Pt/TiN/HfO2/WS2/Pt memristive devices. To implement these devices, a WS2 film was thermally evaporated under high vacuum conditions followed by HfO2 growth using atomic layer deposition at 400 °C. Detailed analysis using high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy revealed diffusion of W and S atoms within the HfO2 layer and extraction of oxygen by W atoms, thus resulting in a multilayer structure (HfWOySx, Wx–1OySx, and W1–xOySx) with varying ratios of oxygen, tungsten, and sulfur atoms (x and y). The fabricated devices demonstrated consistent and stable analogue switching over numerous cycles, with exceptional endurance (2000 cycles) and retention (103 s). They exhibited high cycle-to-cycle consistency, as evidenced by the low-coefficient of variation (3.5% and 4.0% for the set and reset voltages, respectively). By modulating the reset stop voltage, we achieved five-level resistance states, thus making these devices capable of being used in artificial synapses. Furthermore, we observed analog switching with gradual resistance changes under different current compliance conditions by incrementally adjusting the reset–stop voltage. The memristor-based artificial synapses exhibited fundamental synaptic functions, such as long-term potentiation, long-term depression, paired-pulse facilitation, paired-pulse depression, and spike-timing-dependent plasticity for long-term and short-term plasticity. Moreover, we employed a three-layer artificial neural network for image recognition, achieving 94% accuracy using identical pulse amplitudes. These findings highlight the potential of HfO2/WS2 bilayer films, enable controllable analogue switching, and simulate synaptic functions. They hold promise for future data storage memory and neuromorphic computing systems
    corecore