541 research outputs found
Mixture of Bilateral-Projection Two-dimensional Probabilistic Principal Component Analysis
The probabilistic principal component analysis (PPCA) is built upon a global
linear mapping, with which it is insufficient to model complex data variation.
This paper proposes a mixture of bilateral-projection probabilistic principal
component analysis model (mixB2DPPCA) on 2D data. With multi-components in the
mixture, this model can be seen as a soft cluster algorithm and has capability
of modeling data with complex structures. A Bayesian inference scheme has been
proposed based on the variational EM (Expectation-Maximization) approach for
learning model parameters. Experiments on some publicly available databases
show that the performance of mixB2DPPCA has been largely improved, resulting in
more accurate reconstruction errors and recognition rates than the existing
PCA-based algorithms
Locality Preserving Projections for Grassmann manifold
Learning on Grassmann manifold has become popular in many computer vision
tasks, with the strong capability to extract discriminative information for
imagesets and videos. However, such learning algorithms particularly on
high-dimensional Grassmann manifold always involve with significantly high
computational cost, which seriously limits the applicability of learning on
Grassmann manifold in more wide areas. In this research, we propose an
unsupervised dimensionality reduction algorithm on Grassmann manifold based on
the Locality Preserving Projections (LPP) criterion. LPP is a commonly used
dimensionality reduction algorithm for vector-valued data, aiming to preserve
local structure of data in the dimension-reduced space. The strategy is to
construct a mapping from higher dimensional Grassmann manifold into the one in
a relative low-dimensional with more discriminative capability. The proposed
method can be optimized as a basic eigenvalue problem. The performance of our
proposed method is assessed on several classification and clustering tasks and
the experimental results show its clear advantages over other Grassmann based
algorithms.Comment: Accepted by IJCAI 201
Research on Word Segmentation for Chinese Sign Language
PACLIC 20 / Wuhan, China / 1-3 November, 200
- …