2 research outputs found

    <i>N</i>‑Heterocyclic Carbene-Based Conducting Polymer–Gold Nanoparticle Hybrids and Their Catalytic Application

    No full text
    Hybrid nanocomposites of <i>N</i>-heterocyclic carbene (NHC)-functionalized conducting polymers (CPs) with gold nanoparticles (AuNPs) were prepared by concurrent disproportionation and oxidative coupling. The formation of hybrid nanocomposites, NHC-CP/AuNPs, in the simultaneous process was confirmed by transmission electron microscopy, powder X-ray diffraction, cyclic voltammetry, and <sup>13</sup>C solid-state NMR analyses. More importantly, the NHC group played a pivotal role in the dispersion of AuNPs. Further, NHC-CP/AuNPs exhibited good catalytic activity for the reduction of 4-nitrophenol

    Structural Effect of Thioureas on the Detection of Chemical Warfare Agent Simulants

    No full text
    The ability to rapidly detect, identify, and monitor chemical warfare agents (CWAs) is imperative for both military and civilian defense. Since most CWAs and their simulants have an organophosphonate group, which is a hydrogen (H)-bond acceptor, many H-bond donors have been developed to effectively bind to the organophosphonate group. Although thioureas have been actively studied as an organocatalyst, they are relatively less investigated in CWA detection. In addition, there is a lack of studies on the structure–property relationship for gas phase detection. In this study, we synthesized various thioureas of different chemical structures, and tested them for sensing dimethylmethylphosphonate (DMMP), a CWA simulant. Molecular interaction between DMMP and thiourea was measured by <sup>1</sup>H NMR titration and supported by density functional theory (DFT) calculations. Strong H-bond donor ability of thiourea may cause self-aggregation, and CH−π interaction can play an important role in the DMMP detection. Gas-phase adsorption of DMMP was also measured using a quartz crystal microbalance (QCM) and analyzed using the simple Langmuir isotherm, showing the importance of structure-induced morphology of thioureas on the surface
    corecore