1,506 research outputs found
A thin rivulet of perfectly wetting fluid subject to a longitudinal surface shear stress
The lubrication approximation is used to obtain a complete description of the steady unidirectional flow of a thin rivulet of perfectly wetting fluid on an inclined substrate subject to a prescribed uniform longitudinal surface shear stress. The quasi-steady stability of such a rivulet is analysed, and the conditions under which it is energetically favourable for such a rivulet to split into one or more subrivulets are determined
Air-blown rivulet flow of a perfectly wetting fluid on an inclined substrate
Thin-film flows occur in a variety of physical contexts including, for example, industry, biology and nature, and have been the subject of considerable theoretical research. (See, for example, the review by Oron, Davis and Bankoff [4].) In particular, there are several practically important situations in which an external airflow has a significant effect on the behaviour of a film of fluid, and consequently there has been considerable theoretical and numerical work done to try to understand better the various flows that can occur. (See, for example, the studies by King and Tuck [2] and Villegas-DĂaz, Power and Riley [6].) The flow of a rivulet on a planar substrate subject to a shear stress at its free surface has been investigated by several authors, notably Myers, Liang and Wetton [3], Saber and El-Genk [5], and Wilson and Duffy [9]. All of these works concern a non-perfectly wetting fluid; the flow of a rivulet of a perfectly wetting fluid in the absence of a shear stress at its free surface has been treated by Alekseenko, Geshev and Kuibin [1], and by Wilson and Duffy [7,8]. In the present short paper we use the lubrication approximation to obtain a complete description of the steady unidirectional flow of a thin rivulet of a perfectly wetting fluid on an inclined substrate subject to a prescribed uniform longitudinal shear stress at its free surface
Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field
On wet and windy days, the inclined cables of cable-stayed bridges may experience a large amplitude oscillation known as rain-wind-induced vibration (RWIV). It has previously been shown by in situ and wind-tunnel studies that the formation of rain-water accumulations or ârivuletsâ at approximately the separation points of the external aerodynamic flow field and the resulting effect that these rivulets have on this field may be one of the primary mechanisms for RWIV. A numerical method has been developed to undertake simulations of certain aspects of RWIV, in particular, rivulet formation and evolution. Specifically a two-dimensional model for the evolution of a thin film of water on the outer surface of a horizontal circular cylinder subject to the pressure and shear forces that result from the external flow field is presented. Numerical simulations of the resulting evolution equation using a bespoke pseudo-spectral solver capture the formation of two-dimensional rivulets, the geometry, location and growth rate of which are all in good agreement with previous studies. Examinations of how the distribution and magnitude of aerodynamic loading and the Reynolds number influence the rivulet temporal evolution are undertaken, the results of which indicate that while all three affect the temporal evolution, the distribution of the loading has the greatest effect
New developments in rainâwind-induced vibrations of cables
On wet and windy days, the inclined cables of cable stayed bridges can experience large amplitude, potentially damaging oscillations known as rain-wind-induced vibration (RWIV). RWIV is believed to be the result of a complicated non-linear interaction between rivulets of rain water that run down the cables and the wind loading on the cables from the unsteady aerodynamics; however, despite a considerable international research effort, the underlying physical mechanism that governs this oscillation is still not satisfactorily understood. An international workshop on RWIV was held in April 2008, hosted at the University of Strathclyde. The main outcomes of this workshop are summarised in the paper. A numerical method to investigate aspects of the RWIV phenomenon has recently been developed by the authors, which couples an unsteady aerodynamic solver to a thin-film model based on lubrication theory for the flow of the rain water to ascertain the motion of the rivulets owing to the unsteady aerodynamic field. This novel numerical technique, which is still in the relatively early stages of development, has already provided useful information on the coupling between the external aerodynamic flow and the rivulet, and a summary of some of the key results to date is presented
A new dromaeosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China
We describe a new dromaeosaurid theropod from the Upper Cretaceous Wulansuhai Formation of Bayan Mandahu, Inner
Mongolia. The new taxon, Linheraptor exquisitus gen. et sp. nov., is based on an exceptionally well-preserved, nearly
complete skeleton. This specimen represents the fifth dromaeosaurid taxon recovered from the Upper Cretaceous
Djadokhta Formation and its laterally equivalent strata, which include the Wulansuhai Formation, and adds to the known
diversity of Late Cretaceous dromaeosaurids. Linheraptor exquisitus closely resembles the recently reported Tsaagan
mangas. Uniquely among dromaeosaurids, the two taxa share a large, anteriorly located maxillary fenestra and a contact
between the jugal and the squamosal that excludes the postorbital from the infratemporal fenestra. These features suggest
a sister-taxon relationship between L. exquisitus and T. mangas, which indicates the presence of a unique dromaeosaurid
lineage in the Late Cretaceous of Asia. A number of cranial and dental features seen in L. exquisitus and T. mangas, and
particularly some postcranial features of L. exquisitus, suggest that these two taxa are probably intermediate in
systematic position between known basal and derived dromaeosaurids. The discovery of Linheraptor exquisitus is thus
important for understanding the evolution of some salient features seen in the derived dromaeosaurids
Australian national birthweight percentiles by sex and gestational age, 1998-2007
Objective: To present updated national birthweight percentiles by gestational age for male and female singleton infants born in Australia. Design and setting: Cross-sectional population-based study of 2.53 million singleton live births in Australia between 1998 and 2007. Main outcome measures: Birthweight percentiles by gestational age and sex. Results: Between 1998 and 2007, women in Australia gave birth to 2 539 237 live singleton infants. Of these, 2 537 627 had a gestational age between 20 and 44 weeks, and sex and birthweight data were available. Birthweight percentiles are presented by sex and gestational age for a total of 2 528 641 births, after excluding 8986 infants with outlying birthweights. Since the publication of the previous Australian birthweight percentiles in 1999, median birthweight for term babies has increased between 0 and 25 g for boys and between 5 g and 45 g for girls. Conclusions: There has been only a small increase in birthweight percentiles for babies of both sexes and most gestational ages since 1991-1994. These national percentiles provide a current Australian reference for clinicians and researchers assessing weight at birth
Non-equilibrium thermodynamic description of junctions in semiconductor devices
The methods of non-equilibrium thermodynamics of systems with an interface
have been applied to the study of transport processes in semiconductor
junctions. A complete phenomenological model for drift-diffusion processes in a
junction has been derived, which includes, from first principles, both surface
equations and boundary conditions, together with the usual drift-diffusion
equations for the bulks. In this way a self-consistent characterisation of the
whole system, bulks and interface, has been obtained in a common framework. The
completeness of the model has been shown and a simple application to
metal-semiconductor junctions developed.Comment: 12 pages, RevTex. Submitted to Phys. Rev. B minor LaTex errors
correcte
Universal fluctuations in subdiffusive transport
Subdiffusive transport in tilted washboard potentials is studied within the
fractional Fokker-Planck equation approach, using the associated continuous
time random walk (CTRW) framework. The scaled subvelocity is shown to obey a
universal law, assuming the form of a stationary Levy-stable distribution. The
latter is defined by the index of subdiffusion alpha and the mean subvelocity
only, but interestingly depends neither on the bias strength nor on the
specific form of the potential. These scaled, universal subvelocity
fluctuations emerge due to the weak ergodicity breaking and are vanishing in
the limit of normal diffusion. The results of the analytical heuristic theory
are corroborated by Monte Carlo simulations of the underlying CTRW
- âŠ