7,437 research outputs found

    Search for the Cryptoexotic Member of the Baryon Antidecuplet 1/2+ in the Reactions pi- p --> pi- p and pi- p --> K L

    Full text link
    The main goal of this proposal is the search for a narrow cryptoexotic nucleon resonance by scanning of the pi- p system invariant mass in the region (1610-1770) MeV with the detection of pi- p and K Lambda decays. The scan is supposed to be done by the variation of the incident pi- momentum and its measurement with the accuracy of up to +-0.1% (better than 1 MeV in terms of the invariant mass in the whole energy range) with a set of proportional chambers located in the first focus of the magnetooptical channel. High sensitivity of the method to the resonance under search is shown. The secondary particles scattered from a liquid hydrogen target are detected by sets of the wire drift chambers equipped with modern electronics. The time scale of the project is about 3 years. The budget estimate including manpower, the apparatus and operation cost, is about 40 million rubles. The beam time required is (4-6) two week runs on "high" (10 GeV/c) flattop of the ITEP proton synchrotron.Comment: 16 pages, 10 figures. v2: an acknowledge adde

    Quantum kinetic theory of shift current electron pumping in semiconductors

    Full text link
    We develop a theory of laser beam generation of shift currents in non-centrosymmetric semiconductors. The currents originate when the excited electrons transfer between different bands or scatter inside these bands, and asymmetrically shift their centers of mass in elementary cells. Quantum kinetic equations for hot-carrier distributions and expressions for the induced currents are derived by nonequilibrium Green functions. In applications, we simplify the approach to the Boltzmann limit and use it to model laser-excited GaAs in the presence of LO phonon scattering. The shift currents are calculated in a steady-state regime.Comment: 23 pages, 5 figures (Latex

    Structure and electrical levels of point defects in monoclinic zirconia

    Get PDF
    We performed plane wave density functional theory (DFT) calculations of formation energies, relaxed structures, and electrical levels of oxygen vacancies and interstitial oxygen atoms in monoclinic zirconia. The atomic structures of positively and negatively charged vacancies and interstitial oxygen atoms are also investigated. The ionization energies and electron affinities of interstitial oxygen atoms and oxygen vacancies in different charge states are calculated with respect to the bottom of the zirconia conduction band. Using the experimental band offset values at the interface of ZrO2 films grown on silicon, we have found the positions of defect levels with respect to the bottom of silicon conduction band. The results demonstrate that interstitial oxygen atoms and positively charged oxygen vacancies can trap electrons from the bottom of the zirconia conduction band and from silicon. Neutral oxygen vacancy serves as a shallow hole trap for electrons injected from the silicon valence band. The calculations predict negative U for the O− center and stability of V+ centers with respect to disproportionation into V2+ and V0 in monoclinic zirconia.Peer reviewe

    New Objects in Scattering Theory with Symmetries

    Full text link
    We consider 1D quantum scattering problem for a Hamiltonian with symmetries. We show that the proper treatment of symmetries in the spirit of homological algebra leads to new objects, generalizing the well known T- and K-matrices. Homological treatment implies that old objects and new ones are be combined in a differential. This differential arises from homotopy transfer of induced interaction and symmetries on solutions of free equations of motion. Therefore, old and new objects satisfy remarkable quadratic equations. We construct an explicit example in SUSY QM on S1S^1 demonstrating nontriviality of the above relation
    • …
    corecore