66 research outputs found

    Implicit Discourse Relation Classification via Multi-Task Neural Networks

    Full text link
    Without discourse connectives, classifying implicit discourse relations is a challenging task and a bottleneck for building a practical discourse parser. Previous research usually makes use of one kind of discourse framework such as PDTB or RST to improve the classification performance on discourse relations. Actually, under different discourse annotation frameworks, there exist multiple corpora which have internal connections. To exploit the combination of different discourse corpora, we design related discourse classification tasks specific to a corpus, and propose a novel Convolutional Neural Network embedded multi-task learning system to synthesize these tasks by learning both unique and shared representations for each task. The experimental results on the PDTB implicit discourse relation classification task demonstrate that our model achieves significant gains over baseline systems.Comment: This is the pre-print version of a paper accepted by AAAI-1

    Chinese Function Tag Labeling

    Get PDF
    PACLIC 23 / City University of Hong Kong / 3-5 December 200

    Table-to-text Generation by Structure-aware Seq2seq Learning

    Full text link
    Table-to-text generation aims to generate a description for a factual table which can be viewed as a set of field-value records. To encode both the content and the structure of a table, we propose a novel structure-aware seq2seq architecture which consists of field-gating encoder and description generator with dual attention. In the encoding phase, we update the cell memory of the LSTM unit by a field gate and its corresponding field value in order to incorporate field information into table representation. In the decoding phase, dual attention mechanism which contains word level attention and field level attention is proposed to model the semantic relevance between the generated description and the table. We conduct experiments on the \texttt{WIKIBIO} dataset which contains over 700k biographies and corresponding infoboxes from Wikipedia. The attention visualizations and case studies show that our model is capable of generating coherent and informative descriptions based on the comprehensive understanding of both the content and the structure of a table. Automatic evaluations also show our model outperforms the baselines by a great margin. Code for this work is available on https://github.com/tyliupku/wiki2bio.Comment: Accepted by AAAI201

    Order-Planning Neural Text Generation From Structured Data

    Full text link
    Generating texts from structured data (e.g., a table) is important for various natural language processing tasks such as question answering and dialog systems. In recent studies, researchers use neural language models and encoder-decoder frameworks for table-to-text generation. However, these neural network-based approaches do not model the order of contents during text generation. When a human writes a summary based on a given table, he or she would probably consider the content order before wording. In a biography, for example, the nationality of a person is typically mentioned before occupation in a biography. In this paper, we propose an order-planning text generation model to capture the relationship between different fields and use such relationship to make the generated text more fluent and smooth. We conducted experiments on the WikiBio dataset and achieve significantly higher performance than previous methods in terms of BLEU, ROUGE, and NIST scores

    Guiding AMR Parsing with Reverse Graph Linearization

    Full text link
    Abstract Meaning Representation (AMR) parsing aims to extract an abstract semantic graph from a given sentence. The sequence-to-sequence approaches, which linearize the semantic graph into a sequence of nodes and edges and generate the linearized graph directly, have achieved good performance. However, we observed that these approaches suffer from structure loss accumulation during the decoding process, leading to a much lower F1-score for nodes and edges decoded later compared to those decoded earlier. To address this issue, we propose a novel Reverse Graph Linearization (RGL) enhanced framework. RGL defines both default and reverse linearization orders of an AMR graph, where most structures at the back part of the default order appear at the front part of the reversed order and vice versa. RGL incorporates the reversed linearization to the original AMR parser through a two-pass self-distillation mechanism, which guides the model when generating the default linearizations. Our analysis shows that our proposed method significantly mitigates the problem of structure loss accumulation, outperforming the previously best AMR parsing model by 0.8 and 0.5 Smatch scores on the AMR 2.0 and AMR 3.0 dataset, respectively. The code are available at https://github.com/pkunlp-icler/AMR_reverse_graph_linearization.Comment: Findings of EMNLP202

    Statistical Knowledge Assessment for Large Language Models

    Full text link
    Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers? Existing LLMs may generate distinct responses for different prompts. In this paper, we study the problem of quantifying knowledge contained in an LLM regarding a given set of facts. We propose KaRR, a statistical approach to assess factual knowledge for LLMs. The main idea is to estimate the ratio of LLM generating text corresponding to the answer entity given diverse prompts of the subject and the querying relation, versus it generating by random chances. Our assessment suite contains a comprehensive set of 994,123 entities and 600 relations, with 1,395,905 text aliases. We use our method to evaluate 20 LLMs of various sizes, including LLaMA, Alpaca, OPT, etc. Experiments show that our results have a strong correlation (0.43 Kendall's Ï„\tau) with the results of human assessment on LLMs. Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.Comment: Accepted by NeurIPS 202
    • …
    corecore