7,838 research outputs found
Estimating Preferences For Water Quality Improvements Using A Citizens' Jury And Choice Modelling: A Case Study On The Bremer River Catchment, South East Queensland
This paper describes a study undertaken on the Bremer River catchment in south east Queensland. The study informed members of the community about water quality issues in the catchment through a citizens' jury and then solicited their opinion about whether more resources should be devoted towards improving water quality and how much they thought the community should pay. A choice modelling survey was conducted prior to and at the conclusion of the citizens' jury. The jury accepted that more resources should be devoted to improving water quality in the catchment, making a number of pertinent recommendations about how and where additional resources should be directed. In addition, the jury indicated that, in terms of willingness to pay, riparian vegetation was an important ecosystem attribute. Although the preliminary and final models derived for the choice modelling exercise indicate that the models were not equivalent, there was no statistical difference in the implicit prices between the two models. Nevertheless, the confidence interval of the implicit prices narrowed following the provision of information in the citizens' jury and there was an improvement in the statistical reliability of the model
Spin Dynamics in the LTT Phase of ~1/8 Doped Single Crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4
We present La and Cu NMR relaxation measurements in single crystal
La_{1.67}Eu_{0.2}Sr_{0.13}CuO_4. A strong peak in the La spin-lattice
relaxation rate observed in the spin ordered state is well-described by the BPP
mechanism[1] and arises from continuous slowing of electronic spin fluctuations
with decreasing temperature; these spin fluctuations exhibit XY-like anisotropy
in the ordered state. The spin pseudogap is enhanced by the static
charge-stripe order in the LTT phase.Comment: Four pages, three figure
More, More, More: Reducing Thrombosis in Acute Coronary Syndromes Beyond Dual Antiplatelet Therapy-Current Data and Future Directions.
© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.Common to the pathogenesis of acute coronary syndromes (ACS) is the formation of arterial thrombus, which results from platelet activation and triggering of the coagulation cascade.1 To attenuate the risk of future thrombotic events, patients with ACS are treated with dual antiplatelet therapy (DAPT), namely, the combination of aspirin with a P2Y12 inhibitor, such as clopidogrel, ticagrelor, or prasugrel. Despite DAPT, some ≈10% of ACS patients experience recurrent major adverse cardiovascular events over the subsequent 30 days,2 driving the quest for more effective inhibition of thrombotic pathways. In this review, we provide an overview of studies to date and those ongoing that aim to deliver more effective combinations of antithrombotic agents to patients with recent ACS. We have chosen to confine the review to ACS patients without atrial fibrillation because those with atrial fibrillation have a clear indication for combination therapy that includes oral anticoagulation and should, we feel, be treated as a separate cohort. In this article, we discuss the limitations of the currently available clinical trial data and future directions, with suggestions for how practice might change to reduce the risk of coronary thrombosis in those at greatest risk, with minimal impact on bleeding.Peer reviewedFinal Published versio
Ferromagnetic resonance imaging of Co films using magnetic resonance force microscopy
Lateral one-dimensional imaging of cobalt (Co) films by means of microscopic ferromagnetic resonance (FMR) detected using the magnetic resonance force microscope (MRFM) is demonstrated. A novel approach involving scanning a localized magnetic probe is shown to enable FMR imaging in spite of the broad resonance linewidth. We introduce a spatially selective local field by means of a small, magnetically polarized spherical crystallite of yttrium iron garnet (YIG). Using MRFM-detected FMR signals from a sample consisting of two Co films, we can resolve the ∼20 μm lateral separation between the films. The results can be qualitatively understood by consideration of the calculated spatial profiles of the magnetic field generated by the YIG sphere
Inhomogeneous Low Frequency Spin Dynamics in La_{1.65}Eu_{0.2}Sr_{0.15}CuO_4
We report Cu and La nuclear magnetic resonance (NMR) measurements in the
title compound that reveal an inhomogeneous glassy behavior of the spin
dynamics. A low temperature peak in the La spin lattice relaxation rate and the
``wipeout'' of Cu intensity both arise from these slow electronic spin
fluctuations that reveal a distribution of activation energies. Inhomogeneous
slowing of spin fluctuations appears to be a general feature of doped lanthanum
cuprate.Comment: 4 pages, 2 figures. Very slight modifications to figure
Electronic structures of ZnCoO using photoemission and x-ray absorption spectroscopy
Electronic structures of ZnCoO have been investigated using
photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The
Co 3d states are found to lie near the top of the O valence band, with a
peak around eV binding energy. The Co XAS spectrum provides
evidence that the Co ions in ZnCoO are in the divalent Co
() states under the tetrahedral symmetry. Our finding indicates that the
properly substituted Co ions for Zn sites will not produce the diluted
ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
Exploring the Oxygen Order in Hg-1223 and Hg-1201 by 199Hg MAS NMR
We demonstrate the use of a high-resolution solid-state fast (45 kHz) magic
angle spinning (MAS) NMR for mapping the oxygen distribution in Hg-based
cuprate superconductors. We identify observed three peaks in 199Hg spectrum as
belonging to the different chemical environments in the HgO? layer with no
oxygen neighbors, single oxygen neighbor, and two oxygen neighbors. We discuss
observed differences between Hg-1201 and Hg-1223 materials.Comment: 4 pages, 2 figures included. Submitted to NATO Advanced Research
Workshop Proceedings (Miami January 2004
Speckle-visibility spectroscopy: A tool to study time-varying dynamics
We describe a multispeckle dynamic light scattering technique capable of
resolving the motion of scattering sites in cases that this motion changes
systematically with time. The method is based on the visibility of the speckle
pattern formed by the scattered light as detected by a single exposure of a
digital camera. Whereas previous multispeckle methods rely on correlations
between images, here the connection with scattering site dynamics is made more
simply in terms of the variance of intensity among the pixels of the camera for
the specified exposure duration. The essence is that the speckle pattern is
more visible, i.e. the variance of detected intensity levels is greater, when
the dynamics of the scattering site motion is slow compared to the exposure
time of the camera. The theory for analyzing the moments of the spatial
intensity distribution in terms of the electric field autocorrelation is
presented. It is demonstrated for two well-understood samples, a colloidal
suspension of Brownian particles and a coarsening foam, where the dynamics can
be treated as stationary. However, the method is particularly appropriate for
samples in which the dynamics vary with time, either slowly or rapidly, limited
only by the exposure time fidelity of the camera. Potential applications range
from soft-glassy materials, to granular avalanches, to flowmetry of living
tissue.Comment: review - theory and experimen
- …