521 research outputs found

    Ramsey numbers and the size of graphs

    Full text link
    For two graph H and G, the Ramsey number r(H, G) is the smallest positive integer n such that every red-blue edge coloring of the complete graph K_n on n vertices contains either a red copy of H or a blue copy of G. Motivated by questions of Erdos and Harary, in this note we study how the Ramsey number r(K_s, G) depends on the size of the graph G. For s \geq 3, we prove that for every G with m edges, r(K_s,G) \geq c (m/\log m)^{\frac{s+1}{s+3}} for some positive constant c depending only on s. This lower bound improves an earlier result of Erdos, Faudree, Rousseau, and Schelp, and is tight up to a polylogarithmic factor when s=3. We also study the maximum value of r(K_s,G) as a function of m

    Small Complete Minors Above the Extremal Edge Density

    Full text link
    A fundamental result of Mader from 1972 asserts that a graph of high average degree contains a highly connected subgraph with roughly the same average degree. We prove a lemma showing that one can strengthen Mader's result by replacing the notion of high connectivity by the notion of vertex expansion. Another well known result in graph theory states that for every integer t there is a smallest real c(t) so that every n-vertex graph with c(t)n edges contains a K_t-minor. Fiorini, Joret, Theis and Wood conjectured that if an n-vertex graph G has (c(t)+\epsilon)n edges then G contains a K_t-minor of order at most C(\epsilon)log n. We use our extension of Mader's theorem to prove that such a graph G must contain a K_t-minor of order at most C(\epsilon)log n loglog n. Known constructions of graphs with high girth show that this result is tight up to the loglog n factor

    The number of additive triples in subsets of abelian groups

    Full text link
    A set of elements of a finite abelian group is called sum-free if it contains no Schur triple, i.e., no triple of elements x,y,zx,y,z with x+y=zx+y=z. The study of how large the largest sum-free subset of a given abelian group is had started more than thirty years before it was finally resolved by Green and Ruzsa a decade ago. We address the following more general question. Suppose that a set AA of elements of an abelian group GG has cardinality aa. How many Schur triples must AA contain? Moreover, which sets of aa elements of GG have the smallest number of Schur triples? In this paper, we answer these questions for various groups GG and ranges of aa.Comment: 20 pages; corrected the erroneous equality in (1) in the statement of Theorem 1.

    Hamiltonicity, independence number, and pancyclicity

    Get PDF
    A graph on n vertices is called pancyclic if it contains a cycle of length l for all 3 \le l \le n. In 1972, Erdos proved that if G is a Hamiltonian graph on n > 4k^4 vertices with independence number k, then G is pancyclic. He then suggested that n = \Omega(k^2) should already be enough to guarantee pancyclicity. Improving on his and some other later results, we prove that there exists a constant c such that n > ck^{7/3} suffices
    • …
    corecore