38 research outputs found
Solid Solution Strengthened Fe Alloys
Iron (Fe)-based alloys (such as steel) are widely used structural materials in industry. Numerous methods have been applied to improve their mechanical properties. In this study, we used a technique know as magnetron sputtering to deposit various Fe-based binary alloy coatings to investigate the influence of solutes on solid solution hardening. Several factors contribute to the solid solution hardening of the alloys, such as composition, atomic radius, modulus, and lattice parameter. After preliminary calculations and analysis, we selected several solutes, including molybdenum (Mo), niobium (Nb), and zirconium (Zr). The compositions of solutes were varied to be 2.5, 5, 8 atomic %. Our nanoindentation hardness measurements show that among the three solid solution alloys, Fe-Zr has the highest hardness. The influences of solutes on microstructural and hardness evolution in these solid solution alloys are discussed
Oocytes Selected Using BCB Staining Enhance Nuclear Reprogramming and the In Vivo Development of SCNT Embryos in Cattle
The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB) staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus–oocyte complexes (COCs) were divided into control (not exposed to BCB), BCB+ (blue cytoplasm) and BCB− (colorless cytoplasm) groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT) blastocyst rate and full term development rate of bovine SCNT embryos than the BCB− and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes) showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18), and methylation levels of histone H3 at K4 (H3K4me2) than BCB− embryos (embryos developed from BCB− oocytes) at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE) cells, and inner cell mass (ICM) cells, and fewer apoptotic cells than BCB− embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB− blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer
Market integration, income inequality, and kinship system among the Mosuo of China.
Increased access to defensible material wealth is hypothesised to escalate inequality. Market integration, which creates novel opportunities in cash economies, provides a means of testing this hypothesis. Using demographic data collected from 505 households among the matrilineal and patrilineal Mosuo in 2017, we test whether market integration is associated with increased material wealth, whether increased material wealth is associated with wealth inequality, and whether being in a matrilineal vs. patrilineal kinship system alters the relationship between wealth and inequality. We find evidence that market integration, measured as distance to the nearest source of tourism and primary source of household income, is associated with increased household income and 'modern' asset value. Both village-level market integration and mean asset value were associated negatively, rather than positively, with inequality, contrary to predictions. Finally, income, modern wealth and inequality were higher in matrilineal communities that were located closer to the centre of tourism and where tourism has long provided a relatively stable source of income. However, we also observed exacerbated inequality with increasing farm animal value in patriliny. We conclude that the forces affecting wealth and inequality depend on local context and that the importance of local institutions is obscured by aggregate statistics drawn from modern nation states.NSF BCS 1461514 - National Science FoundationPublished versio
Using evolutionary theory to hypothesize a transition from patriliny to matriliny and back again among the ethnic Mosuo of Southwest China
Transitions to matriliny are said to be relatively rare. This evidence is sometimes used to support arguments that perceive matriliny as a problematic and unstable system of kinship. In this article, we use an evolutionary perspective to trace changes in kinship to and from matriliny among the Mosuo of Southwest China as potentially adaptive. The Mosuo are famous for practicing a relatively rare form of female-biased kinship involving matrilineal descent and inheritance, natalocal residence, and a non-marital reproductive system (‘walking marriage’ or sese). Less well documented is their patrilineal subpopulation, who practice male-biased, patrilineal inheritance and descent, patrilocal residence, and exclusive marriage. Our analysis supports the existence of a prior transition to matriliny at least a millennium ago among Mosuo residing in the Yongning Basin, followed by a subsequent transition to patriliny among Mosuo residing in the more rugged mountainous terrain near Labai. We argue that these transitions make sense in light of economic, social, and political conditions that disfavor versus favor disproportionate investments in men, in matriliny versus patriliny, respectively. We conclude that additional evidence of such transitions would shed light on explanations of variation in kinship and that convergent approaches involving analysis of genetic, archaeological, and ethnohistorical data would provide holistic understandings of kinship and social change.Published versio
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model
characterized by economical training and efficient inference. It comprises 236B
total parameters, of which 21B are activated for each token, and supports a
context length of 128K tokens. DeepSeek-V2 adopts innovative architectures
including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees
efficient inference through significantly compressing the Key-Value (KV) cache
into a latent vector, while DeepSeekMoE enables training strong models at an
economical cost through sparse computation. Compared with DeepSeek 67B,
DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves
42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum
generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality
and multi-source corpus consisting of 8.1T tokens, and further perform
Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unlock
its potential. Evaluation results show that, even with only 21B activated
parameters, DeepSeek-V2 and its chat versions still achieve top-tier
performance among open-source models
Remote Monitoring and Fault Diagnosis of Ocean Current Energy Hydraulic Transmission and Control Power Generation System
The development of clean and environmentally friendly energy is necessary to address significant energy challenges, and abundant sea current energy, which plays a key role in the decarbonization of our energy systems and has attracted increasing attention among researchers. In the present study, a remote monitoring and diagnosis system was designed in accordance with the requirements of a 50 kW hydraulic transmission and control power generation system. Hardware selection and software function requirement analysis were then performed. The causes of system faults were analyzed, the output fault types of the improved model were determined, and effective monitoring parameters were selected. The accuracy of traditional spectra in diagnosing faults is poor; however, the generalization capability of support vector machines (SVM) is robust. Thus, an improved particle swarm algorithm optimized SVM fault diagnosis model for the hydraulic transmission control power generation system was proposed to rapidly and effectively determine the key parameters. Remote monitoring software for the hydraulic transmission and control power generation system was also developed. The results of remote monitoring and diagnostic tests showed that the software was able to satisfy the functional requirements of the hydraulic transmission control power generation remote monitoring system, and the operation effect was consistent with expectations. By comparing the test accuracy of different diagnostic models, the improved PSVM model has the highest test accuracy with a classification accuracy of 99.4% in the case of normal operation, accumulator failure, relief valve failure and motor failure. In addition, the proposed diagnostic method was effective, thereby ensuring safe and reliable operation of the hydraulic transmission control power generation system
3D-Printing of Hierarchical Porous Copper-Based Metal–Organic-Framework Structures for Efficient Fixed-Bed Catalysts
Metallic structures with hierarchical open pores that span several orders of magnitude are ideal candidates for various catalyst applications. However, porous metal materials prepared using alloy/dealloy methods still struggle to achieve continuous pore distribution across a broad size range. Herein, we report a printable copper (Cu)/iron (Fe) composite ink that produces a hierarchical porous Cu material with pores spanning over 4 orders of magnitude. The manufacturing process involves four steps: 3D-printing, annealing, dealloying, and reannealing. Because of the unique annealing process, the resulting hierarchical pore surface becomes coated with a layer of Cu–Fe alloy. This feature imparts remarkable catalytic ability and versatile functionality within fixed bed reactors for 4-nitrophenol (4-NP) reduction and Friedländer cyclization. Specifically, for 4-NP reduction, the porous Cu catalyst demonstrates an excellent reaction rate constant (kapp = 86.5 × 10–3 s–1) and a wide adaptability of the substrate (up to 1.26 mM), whilst for Friedländer cyclization, a conversion over 95% within a retention time of only 20 min can be achieved by metal–organic-framework-decorated porous Cu catalyst. The utilization of dual metallic particles as printable inks offers valuable insights for fabricating hierarchical porous metallic structures for applications, such as advanced fixed-bed catalysts
MAP kinase phosphatase MKP-1 regulates p-ERK1/2 signaling pathway with fluoride treatment
Under embargo until: 2022-01-22Dental fluorosis is characterized by hypomineralization of tooth enamel caused by ingestion of excessive fluoride during enamel formation. Excess fluoride could have effects on the ERK signaling, which is essential for the ameloblasts differentiation and tooth development. MAP kinase phosphatase-1 (MKP-1) plays a critical role in regulating ERK related kinases. However, the role of MKP-1 in ameloblast and the mechanisms of MKP-1/ERK signaling in the pathogenesis of dental fluorosis are incompletely understood. Here, we adopted an in vitro fluorosis cell model using murine ameloblasts-like LS8 cells by employing sodium fluoride (NaF) as inducer. Using this system, we demonstrated that fluoride exposure led to an inhibition of p-MEK and p-ERK1/2 with a subsequent increase in MKP-1 expression in a dose-dependent manner. We further identified, under high dose fluoride, MKP-1 acted as a negative regulator of the fluoride-induced p-ERK1/2 signaling, leading to downregulation of CREB, c-myc, and Elk-1. Our results identify a novel MKP-1/ERK signaling mechanism that regulates dental fluorosis and provide a framework for studying the molecular mechanisms of intervention and fluorosis remodeling under normal and pathological conditions. MKP-1 inhibitors may prove to be a benefit therapeutic strategy for dental fluorosis treatment.acceptedVersio
Oxamflatin Significantly Improves Nuclear Reprogramming, Blastocyst Quality, and In Vitro Development of Bovine SCNT Embryos
Aberrant epigenetic nuclear reprogramming results in low somatic cloning efficiency. Altering epigenetic status by applying histone deacetylase inhibitors (HDACi) enhances developmental potential of somatic cell nuclear transfer (SCNT) embryos. The present study was carried out to examine the effects of Oxamflatin, a novel HDACi, on the nuclear reprogramming and development of bovine SCNT embryos in vitro. We found that Oxamflatin modified the acetylation status on H3K9 and H3K18, increased total and inner cell mass (ICM) cell numbers and the ratio of ICM:trophectoderm (TE) cells, reduced the rate of apoptosis in SCNT blastocysts, and significantly enhanced the development of bovine SCNT embryos in vitro. Furthermore, Oxamflatin treatment suppressed expression of the pro-apoptotic gene Bax and stimulated expression of the anti-apoptotic gene Bcl-XL and the pluripotency-related genes OCT4 and SOX2 in SCNT blastocysts. Additionally, the treatment also reduced the DNA methylation level of satellite I in SCNT blastocysts. In conclusion, Oxamflatin modifies epigenetic status and gene expression, increases blastocyst quality, and subsequently enhances the nuclear reprogramming and developmental potential of SCNT embryos