86 research outputs found

    Search and Result Presentation in Scientific Workflow Repositories

    Get PDF
    We study the problem of searching a repository of complex hierarchical workflows whose component modules, both composite and atomic, have been annotated with keywords. Since keyword search does not use the graph structure of a workflow, we develop a model of workflows using context-free bag grammars. We then give efficient polynomial-time algorithms that, given a workflow and a keyword query, determine whether some execution of the workflow matches the query. Based on these algorithms we develop a search and ranking solution that efficiently retrieves the top-k grammars from a repository. Finally, we propose a novel result presentation method for grammars matching a keyword query, based on representative parse-trees. The effectiveness of our approach is validated through an extensive experimental evaluation

    Most Expected Winner: An Interpretation of Winners over Uncertain Voter Preferences

    Full text link
    It remains an open question how to determine the winner of an election when voter preferences are incomplete or uncertain. One option is to assume some probability space over the voting profile and select the Most Probable Winner (MPW) -- the candidate or candidates with the best chance of winning. In this paper, we propose an alternative winner interpretation, selecting the Most Expected Winner (MEW) according to the expected performance of the candidates. We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of \mew over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.Comment: This is the technical report of the following paper: Haoyue Ping and Julia Stoyanovich. 2023. Most Expected Winner: An Interpretation of Winners over Uncertain Voter Preferences. Proc. ACM Manag. Data, 1, N1, Article 22 (May 2023), 33 pages. https://doi.org/10.1145/358870

    Rule-Based Application Development using Webdamlog

    Get PDF
    We present the WebdamLog system for managing distributed data on the Web in a peer-to-peer manner. We demonstrate the main features of the system through an application called Wepic for sharing pictures between attendees of the sigmod conference. Using Wepic, the attendees will be able to share, download, rate and annotate pictures in a highly decentralized manner. We show how WebdamLog handles heterogeneity of the devices and services used to share data in such a Web setting. We exhibit the simple rules that define the Wepic application and show how to easily modify the Wepic application.Comment: SIGMOD - Special Interest Group on Management Of Data (2013
    • …
    corecore