55 research outputs found
Direct transition from quantum escape to phase diffusion regime in YBaCuO biepitaxial Josephson Junctions
Dissipation encodes interaction of a quantum system with the environment and
regulates the activation regimes of a Brownian particle. We have engineered
grain boundary biepitaxial YBaCuO junctions to drive a direct transition from
quantum activated running state to phase diffusion regime. The cross-over to
the quantum regime is tuned by the magnetic field and dissipation is encoded in
a fully consistent set of junction parameters. To unravel phase dynamics in
moderately damped systems is of general interest for advances in the
comprehension of retrapping phenomena and in view of quantum hybrid technology
Coherent transport in extremely underdoped Nd1.2Ba1.8Cu3Oz nanostructures
Proximity-effect and resistance magneto-fluctuations measurements in
submicron Nd1.2Ba1.8Cu3Oz (NBCO) nano-loops are reported to investigate
coherent charge transport in the non-superconducting state. We find an
unexpected inhibition of cooper pair transport, and a destruction of the
induced superconductivity, by lowering the temperature from 6K to 250mK. This
effect is accompanied by a significant change in the conductance-voltage
characteristics and in the zero bias conductance response to the magnetic field
pointing to the activation of a strong pair breaking mechanism at lower
temperature. The data are discussed in the framework of mesoscopic effects
specific to superconducting nanostructures, proximity effect and high
temperature superconductivity.Comment: to appear on new journal of Physic
Magneto-transport study of top- and back-gated LaAlO/SrTiO heterostructures
We report a detailed analysis of magneto-transport properties of top- and
back-gated LaAlO/SrTiO heterostructures. Efficient modulation in
magneto-resistance, carrier density, and mobility of the two-dimensional
electron liquid present at the interface is achieved by sweeping top and back
gate voltages. Analyzing those changes with respect to the carrier density
tuning, we observe that the back gate strongly modifies the electron mobility
while the top gate mainly varies the carrier density. The evolution of the
spin-orbit interaction is also followed as a function of top and back gating.Comment: 15 pages, 6 figure
Quantum crossover in moderately damped epitaxial NbN/MgO/NbN junctions with low critical current density
High quality epitaxial NbN/MgO/NbN Josephson junctions have been realized
with MgO barriers up to a thickness of d=1 nm. The junction properties
coherently scale with the size of barrier, and low critical current densities
down to 3 A/cm have been achieved for larger barriers. In this limit,
junctions exhibit macroscopic quantum phenomena for temperatures lower than 90
mK. Measurements and junction parameters support the notion of a possible use
of these devices for multiphoton quantum experiments, taking advantage of the
fast non equilibrium electron-phonon relaxation times of NbN
Fabricating Superconducting Interfaces between Artificially-Grown LaAlO and SrTiO Thin Films
Realization of a fully metallic two-dimensional electron gas at the interface
between artificially-grown LaAlO and SrTiO thin films has been an
exciting challenge. Here we present for the first time the successful
realization of a superconducting 2DEG at interfaces between artificially-grown
LaAlO and SrTiO thin films. Our results highlight the importance of two
factors-the growth temperature and the SrTiO termination. We use local
friction force microscopy and transport measurements to determine that in
normal growth conditions the absence of a robust metallic state at low
temperature in the artificially-grown LaAlO/SrTiO interface is due to
the nanoscale SrO segregation occurring on the SrTiO film surface during
the growth and the associated defects in the SrTiO film. By adopting an
extremely high SrTiO growth temperature, we demonstrate a way to realize
metallic, down to the lowest temperature, and superconducting 2DEG at
interfaces between LaAlO layers and artificially-grown SrTiO thin
films. This study paves the way to the realization of functional
LaAlO/SrTiO superlattices and/or artificial LaAlO/SrTiO
interfaces on other substrates
Little-Parks effect in single YBaCuO sub-micron rings
The properties of single submicron high-temperature superconductor (HTS)
rings are investigated. The Little-Parks effect is observed and is accompanied
by an anomalous behavior of the magnetic dependence of the resistance, which we
ascribe to non-uniform vorticity (superfluid angular momentum) within the ring
arms. This effect is linked to the peculiar HTS-relationship between the values
of the coherence length and the London penetration depth.Comment: 14 pages, 3 figure
Geometrical vortex lattice pinning and melting in YBaCuO submicron bridges
Since the discovery of high-temperature superconductors (HTSs), most efforts of researchers have
been focused on the fabrication of superconducting devices capable of immobilizing vortices,
hence of operating at enhanced temperatures and magnetic fields. Recent findings that geometric
restrictions may induce self-arresting hypervortices recovering the dissipation-free state at high fields
and temperatures made superconducting strips a mainstream of superconductivity studies. Here we
report on the geometrical melting of the vortex lattice in a wide YBCO submicron bridge preceded by
magnetoresistance (MR) oscillations fingerprinting the underlying regular vortex structure. Combined
magnetoresistance measurements and numerical simulations unambiguously relate the resistance
oscillations to the penetration of vortex rows with intermediate geometrical pinning and uncover the
details of geometrical melting. Our findings offer a reliable and reproducible pathway for controlling
vortices in geometrically restricted nanodevices and introduce a novel technique of geometrical
spectroscopy, inferring detailed information of the structure of the vortex system through a combined
use of MR curves and large-scale simulations
Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction
We report on the occurrence of multiple hopping and retrapping of a Brownian
particle in a tilted washboard potential. The escape dynamic has been studied
experimentally by measuring the switching current distributions as a function
of temperature in a moderately damped NbN/MgO/NbN Josephson junction. At low
temperatures the second moment of the distribution increases in agreement with
calculations based on Kramers thermal activation regime. After a turn-over
temperature T*, the shape of the distributions starts changing and width
decreases with temperature. We analyze the data through fit of the switching
probability and Monte Carlo simulations and we find a good agreement with a
model based on a multiple retrapping process
Hybrid superconductor-semiconductor nanostructures: nanoelectronic applications, topological properties, correlation and disorder.
Obiettivo di questo progetto è progettare, realizzare e caratterizzare nanodispositivi basati su una architettura quantistica ibrida comprendente superconduttori e
semiconduttori.
Le nanotecnologie avanzate consentono, infatti, di unire in modo innovativo materiali superconduttori e semiconduttori, combinando le loro proprietĂ e realizzando
nuove funzionalità eletttroniche. Lo studio di nano-dispositivi ibridi è di grande interesse sia per la fisica fondamentale che per quella applicata, e risponde a una delle
piĂą recenti e interessanti questioni della fisica della materia condensata: la possibilitĂ di misurare e manipolare eccitazioni complesse di particelle ed elettroni.
Le strutture ibride proposte in questo progetto saranno prevalentemente basate su superconduttori non-convenzionali, in particolare superconduttori ad alta
temperature critica (HTS), e barriere composte da nanofili semiconduttivi (InAs, InSb, InP) oppure flake di grafene o isolanti topologici (Bi2Te3 e Sb2Te3). Inoltre
studieremo l'accoppiamento con il gas di elettroni bidimensionale che si realizza all'interfaccia tra LaAlO3/SrTiO3.
Le nanostrutture superconduttore-semiconduttore sono un passo fondamentale per l'implementazione del transistor superconduttivo e sono molto promettenti per varie
applicazioni, che vanno dalla spintronica di bassa potenza ai sensori ultra-sensibili nel regime dei THz, nonché all'elettronica quantistica.
Il progetto si prefigge di 1) comprendere come la coerenza superconduttiva si propaga in barriere quasi unidimensionali e attraverso interfacce di nuova generazione
composte da superconduttori non-convenzionali e nanostrutture; 2) individuare, sia teoricamente che sperimentalmente, evidenze della creazione di fermioni di
Majorana e stati topologicamente protetti, e comprenderne la stabilitĂ in presenza di correlazioni, disordine e condizioni di non-equilibrio. Questi risultati
rappresenterebbero un importante traguardo nella fisica dello stato solido.
Il nostro progetto sfrutterĂ in modo sinergico le competenze di tre gruppi di giovani ricercatori italiani che condivideranno le loro competenze per lavorare in questo
campo nuovo e inesplorato, in continua collaborazione con prestigiosi centri di ricerca europei e mondiali.
L'unità sperimentale fa riferimento al Dipartimento di Fisica, Università degli studi di Napoli “Federico II” - NA e si occuperà delle misure di trasporto basse
temperature. I campioni saranno realizzati in collaborazione con il CNR-NANO di Pisa continuando una fruttuosa collaborazione giĂ attiva da alcuni anni. L'unitĂ
sperimentale sarĂ supportata nell'interpretazione, nell'analisi e nella progettazione degli esperimenti da due unitĂ teoriche: ISC-CNR Roma e SPIN-CNR Genova. Le
competenze complementari dei ricercatori coinvolti garantiranno rapidi progressi nel campo. In particolare l'unitĂ di Napoli metterĂ a disposizione infrastrutture per
caratterizzazione in trasporto di campioni a temperature ultra-basse (fino a 15mK) e il suo bagaglio di conoscenze nel campo della superconduttivitĂ debole. L'unitĂ
ISC-CNR si concentrerĂ sugli aspetti topologici, sulla fisica dei Fermioni di Majorana e su effetti di disordine e correlazione. L'unitĂ SPIN-CNR supporterĂ il
progetto grazie alle proprie competenze in trasporto di non-equilibrio ed effetti a molti corpi in sistemi elettronici fortemente correlati
- …