7,024 research outputs found
Ride quality - An exploratory study and criteria development
The Langley six degree of freedom visual motion simulator has been used to measure subjective response ratings of the ride quality of eight segments of flight, representative of a wide variation in comfort estimates. The results indicate that the use of simulators for this purpose appears promising. A preliminary approach for the development of criteria for ride quality ratings based on psychophysical precepts is included
The effects of the plane of vestibular stimulation on task performance and involuntary eye motion
Vestibular stimulation and subject orientation effects on task performance and involuntary eye motio
Some observations during weightlessness sim- ulation with subject immersed in a rotating water tank
Observations during weightlessness simulation with subject immersed in rotating water tan
G conditioning suit Patent
Conditioning suit for normal function of astronaut cardiovascular system in gravity environmen
Development of the reentry flight dynamics simulator for evaluation of space shuttle orbiter entry systems
A nonlinear, six degree of freedom, digital computer simulation of a vehicle which has constant mass properties and whose attitudes are controlled by both aerodynamic surfaces and reaction control system thrusters was developed. A rotating, oblate Earth model was used to describe the gravitational forces which affect long duration Earth entry trajectories. The program is executed in a nonreal time mode or connected to a simulation cockpit to conduct piloted and autopilot studies. The program guidance and control software used by the space shuttle orbiter for its descent from approximately 121.9 km to touchdown on the runway
Human comfort response to random motions with combined yawing and rolling motions
The effects of random yawing and rolling velocities on passenger ride comfort responses were examined on a visual motion simulator. The effects of power spectral density shape and frequency ranges of peak power from 0 to 2 Hz were studied. The subjective rating data and the physical motion data obtained are presented. No attempt at interpretation or detailed analysis of the data is made. There existed during this study motions in all other degrees of freedom as well as the yawing and rolling motions, because of the characteristics of the simulator. These unwanted motions may have introduced some interactive effects on passenger responses which should be considered in any analysis of the data
Human comfort response to random motions with a dominant vertical motion
Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with vertical acceleration inputs with various power spectra shapes and magnitudes. The data obtained are presented
Human comfort response to random motions with a dominant longitudinal motion
Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with longitudinal acceleration inputs with various power spectra shapes and magnitudes. The results show only little influence of spectra shape on comfort response. The effects of magnitude on comfort response indicate the applicability of psychophysical precepts for comfort modeling
Human comfort response to random motions with a dominant pitching motion
The effects of random pitching velocities on passenger ride comfort response were examined on the NASA Langley Visual Motion Simulator. The effects of power spectral density shape and frequency ranges from 0 to 2 Hz were studied. The subjective rating data and the physical motion data obtained are presented. No attempt at interpretation or detailed analysis of the data is made. Motions in all degrees of freedom existed as well as the intended pitching motion, because of the characteristics of the simulator. These unwanted motions may have introduced some interactive effects on passenger responses which should be considered in any analysis of the data
Human comfort response to dominant random motions in longitudinal modes of aircraft motion
The effects of random vertical and longitudinal accelerations and pitching velocity passenger ride comfort responses were examined on the NASA Langley Visual Motion Simulator. Effects of power spectral density shape were studied for motions where the peak was between 0 and 2 Hz. The subjective rating data and the physical motion data obtained are presented without interpretation or detailed analysis. There existed motions in all other degrees of freedom as well as the particular pair of longitudinal airplane motions studied. These unwanted motions, caused by the characteristics of the simulator may have introduced some interactive effects on passenger responses
- …