20 research outputs found
Experimental study of basalt carbonatization
La concentration croissante de CO2 dans l'atmosphĂšre et les dangers potentiels qu'elle reprĂ©sente pour la terre au travers des changements climatiques, l'acidification des ocĂ©ans et l'Ă©lĂ©vation du niveau de la mer a conduit Ă un certain nombre de projets qui tentent de trouver un moyen sĂ»r et inoffensifs pour capturer et stocker le CO2 dans des formations gĂ©ologiques. Une de ces tentatives se dĂ©roule actuellement en Islande Ă la centrale gĂ©othermique HellisheiĂ°i, situĂ©e Ă proximitĂ© de la capitale, Reykjavik (le projet CarbFix). Le dioxyde de carbone et d'autres gaz comme H2S, N2, H2, CH4, et Ar sont des sous-produits de l'exploitation de l'Ă©nergie gĂ©othermique et l'objectif est de stocker tout ce CO2 dans les formations basaltiques qui se situent sous HellisheiĂ°i. Le CO2 est dissous dans un courant d'eau injectĂ© par pompage dans puits jusqu'Ă Ă 350 mĂštres de profondeur et qui s'Ă©coule ensuite au sein d'horizons mixtes de verre basaltique et de basalte cristallin. Les roches basaltiques sont caractĂ©risĂ©es par des teneurs Ă©levĂ©es en cations divalents comme Mg2+, Fe2+ et Ca2+ et des vitesses de dissolution relativement rapides. L'eau acide chargĂ©e en CO2 dissout le basalte, libĂ©rant ainsi des cations qui peuvent rĂ©agir avec les ions carbonates pour former des minĂ©raux carbonatĂ©s (magnĂ©site, sidĂ©rite, calcite, ankĂ©rite ainsi que des solutions solides (Ca-Mg-Fe)CO3)). Si on admet que c'est la dissolution des roches basaltiques qui contrĂŽle ce processus de sĂ©questration du carbone, on peut en dĂ©duire que tout ce qui pourra limiter cette dissolution sera prĂ©judiciable Ă l'ensemble du processus de confinement du CO2. Mon rĂŽle dans le projet CarbFix a Ă©tĂ© d'examiner les effets de la formation de revĂȘtements de carbonate de calcium sur la dissolution des phases primaires de basalte. Je me suis concentrĂ©e sur le verre basaltique et le clinopyroxĂšne, diopside, afin de comparer des phases cristallines et non cristallines. En outre, une sĂ©rie d'expĂ©riences ont Ă©tĂ© menĂ©es pour Ă©tudier l'effet de la structure du minĂ©ral primaire sur la nuclĂ©ation de calcite. Ces expĂ©riences ont Ă©tĂ© faites pour vĂ©rifier si les diffĂ©rentes structures de silicate conduiraient Ă une diffĂ©rente Ă©tendue de la nuclĂ©ation et croissance de la calcite Ă la surface des silicates. Enfin, de nombreuses expĂ©riences de dissolution de verre basaltique ont Ă©tĂ© menĂ©es en prĂ©sence de bactĂ©ries hĂ©tĂ©rotrophes mortes et vivantes, Pseudomonas reactans, afin de dĂ©terminer l'effet des bactĂ©ries sur la dissolution des roches dans le systĂšme des eaux souterraines du site HellisheiĂ°i. Les expĂ©riences de dissolution de verre basaltique et de diopside ont Ă©tĂ© rĂ©alisĂ©s Ă 25 et 70 °C pour un pH de 7-8 dans des rĂ©acteurs Ă circulation alimentĂ©s en solutions de forces ioniques > 0,03 mol / kg contenant CaCl2 ± NaHCO3. Deux sĂ©ries d'essais ont Ă©tĂ© menĂ©s simultanĂ©ment, une sĂ©rie appelĂ©e essais de 'prĂ©cipitations' au cours de laquelle la solution dans le rĂ©acteur Ă©tait sursaturĂ©e par rapport Ă la calcite, et l'autre sĂ©rie appelĂ©e essais de 'contrĂŽle', pour laquelle la modĂ©lisation PHREEQC ne prĂ©voyait pas formation de minĂ©raux secondaires. Ainsi, il a Ă©tĂ© possible de comparer les vitesses de dissolution du verre basaltique et du diopside Ă 25 °C avec et sans la formation de carbonate de calcium et d'autres minĂ©raux secondaires afin d'en dĂ©duire leur effet sur les vitesses de dissolution. Les images de microscopie Ă©lectronique Ă balayage ont montrĂ© que des quantitĂ©s importantes de carbonate de calcium ont prĂ©cipitĂ© au cours des expĂ©riences de 'prĂ©cipitations' mais, dans le cas du verre basaltique la croissance primaire se prĂ©sente sous forme gros amas discrets de calcite et d'aragonite qui ne se forment pas sur le verre lui-mĂȘme. Par contre, plusieurs des cristaux de diopside ont Ă©tĂ© largement envahis par des revĂȘtements de calcite sans aragonite dĂ©celable. Dans les deux cas, la prĂ©sence de calcite / aragonite n'a pas eu d'incidence sur les vitesses de dissolution du verre basaltique et de diopside qui sont les mĂȘmes que celles mesurĂ©es dans la sĂ©rie 'contrĂŽle'. Il semblerait que la couverture discontinue et poreuse de carbonates permet aux ions des phases primaires de continuer Ă diffuser sans entrave Ă travers la couche secondaire. Pour mieux Ă©valuer l'effet de la surface des silicates sur la nuclĂ©ation de la calcite, les vitesses de dissolution de six minĂ©raux et roches silicatĂ©s ont Ă©tĂ© mesurĂ©es Ă 25 °C dans des rĂ©acteurs Ă circulation en prĂ©sence de solutions de pH ~ 9,1 sursaturĂ©es par rapport Ă la calcite. Les phases silicatĂ©es Ă©taient les suivantes: olivine, enstatite, augite, labradorite, verre basaltique et pĂ©ridotite. Les rĂ©sultats montrent que le temps d'induction pour la nuclĂ©ation de calcite et l'Ă©tendue de la couverture de carbonatĂ©e avec le temps varient selon la phase silicatĂ©e. Dans un mĂȘme laps de temps l'olivine, l'enstatite et la pĂ©ridotite (principalement composĂ© d'olivine riche en Mg) Ă©taient les plus couvertes par les prĂ©cipitations de calcite, suivis par l'augite, la labradorite et enfin le verre basaltique. Toute la croissance de calcite a eu lieu sur la surface du silicate, y compris sur le verre basaltique. La cinĂ©tique favorise la croissance de calcite par nuclĂ©ation sur les minĂ©raux orthorhombiques (enstatite et olivine) par rapport aux minĂ©raux monocliniques et tricliniques. Les plus faibles quantitĂ©s de calcite ont Ă©tĂ© trouvĂ©es sur le verre qui n'a pas de structure silicatĂ©e ordonnĂ©e. Des bactĂ©ries hĂ©tĂ©rotrophes, Pseudomonas reactans ont Ă©tĂ© extraites de l'un des puits de contrĂŽle Ă HellisheiĂ°i et ont ensuite Ă©tĂ© sĂ©parĂ©es, purifiĂ©es et cultivĂ©es en laboratoire. Avec le bouillon de culture utilisĂ©, les conditions de croissance optimales de cette bactĂ©rie sont 5-37 °C et un pH de 7,0 Ă 8. Cette bactĂ©rie, trĂšs commune dans l'eau et le sol, est une bonne candidate pour tester l'impact des bactĂ©ries hĂ©tĂ©rotrophes en gĂ©nĂ©ral lors de la sĂ©questration du CO2 dans un aquifĂšre naturel comme en Islande. Les vitesses de dissolution du verre basaltique ont Ă©tĂ© mesurĂ©s Ă 25 °C dans des nouveaux rĂ©acteurs Ă circulation permettant d'opĂ©rer en prĂ©sence de bactĂ©ries (BMFR) dans des solutions tamponnĂ©es transportant 0,1 Ă 0,4 g/L de bactĂ©ries mortes et 0,9 Ă 19 g/L de bactĂ©ries vivantes Ă 4 = pH = 10. Les rĂ©sultats ont montrĂ© que la prĂ©sence de ces bactĂ©ries n'avait quasiment pas d'effet effet sur la vitesse de dissolution. La conclusion gĂ©nĂ©rale de cette Ă©tude est que ni les revĂȘtements de carbonate, ni les bactĂ©ries n'ont d'impact majeur sur les vitesses de dissolution des phases primaires silicatĂ©es. Ainsi, leur effet devrait ĂȘtre nĂ©gligeable sur le processus de sĂ©questration du CO2 sur le site HellisheiĂ°i en Islande. Le basalte cristallin pourrait ĂȘtre recouvert plus rapidement en carbonate de calcium, mais le verre basaltique pourrait aussi servir de support pour la nuclĂ©ation de calcite.The increasing levels of CO2 in the atmosphere and the potential dangers this pose to the Earth through climate change, ocean acidification and sea-level rise has lead to a substantial number of projects attempting to find a safe and benign way to capture and store CO2 in geological formations, also referred to as the CCS (Carbon Capture Storage) technology. One of these CCS attempts is currently taking place in Iceland at the geothermal power plant HellisheiĂ°i, located close to the capital Reykjavik (the CarbFix project). CO2 and other gasses (H2S, N2, H2, CH4) are waste products of the geothermal energy exploitation and the aim is with time to store all of this anthropogenic-made CO2 in the basaltic formations underlying HellisheiĂ°i. The CO2 is dissolved in groundwater as it is pumped down to 350 meters depth and then injected into mixed horizons of basaltic glass and crystalline basalt. The basaltic rocks are characterized by high contents of divalent cations like Mg2+, Fe2+ and Ca2+ and relatively fast dissolution rates. The acidic CO2-loaded water will dissolve the basalt thereby releasing cations, which can react with the aqueous carbonate ions to form carbonate minerals (magnesite, siderite, calcite, ankerite and Ca-Mg-Fe solid solutions). The rate-limiting step of this carbon sequestration process is thought to be the dissolution of basaltic rocks, thus any effect that could potentially limit basalt dissolution would be detrimental to the overall CO2 sequestration process. My part of the CarbFix project has been to look at the effects the formation of calcium carbonate coatings would have on the dissolution of the primary phase, in this case basaltic glass and the clinopyroxene diopside, so there would be a glass phase to compare with the results of a mineral phase. Furthermore, a series of experiments were conducted where we tested the primary mineral structure's affect on calcite nucleation. This was done in order to test if different silicate structures would lead to different extent of calcite nucleation and growth. Finally, extensive series were conducted on the dissolution of basaltic glass in the presence of dead and live heterotrophic bacteria, Pseudomonas reactans in order to determine the potential effect of bacteria on the carbon storage effort at the HellisheiĂ°i site. The basaltic glass and diopside dissolution experiments were run at 25 and 70 ÂșC and pH 7-8 in mixed-flow reactors connected to solutions containing CaCl2±NaHCO3 with ionic strengths > 0.03 mol/kg. Two sets of experimental series were run simultaneously, one series called the "precipitation" experiments in which the solution inside the reactor was supersaturated with respect to calcite, and the other series called the "control" experiments, where PHREEQC modeling foretold no major secondary mineral formation. By this, it was possible to compare dissolution rates of basaltic glass and diopside at 25 ÂșC with and without calcium carbonate and other secondary mineral formation in order to deduce the effect on their dissolution rates. Scanning electron microscope images showed substantial amounts of calcium carbonate had precipitated in the "precipitation" experiments, but in the case of basaltic glass the primary growth appeared as big, discrete cluster of calcite and aragonite with no growth on the glass itself. Opposed to this, several of the diopside crystals were extensively overgrown by calcite coatings and no aragonite was found. In neither cases did the presence of calcite/aragonite have an effect on the dissolution rates of basaltic glass and diopside when compared to the "control' dissolution rates. It appears the discontinuous cover of the carbonate allows the ions of the primary phases to continue to diffuse through the secondary layer unhindered. To further assess the effect of silicate surface on the nucleation of calcite, the dissolution rates of six selected silicate minerals and rocks were measured in mixed-flow reactors in solutions supersaturated with respect to calcite at 25 ÂșC and pH ~9.1. The silicate phases were: Mg-rich olivine, enstatite, augite, labradorite, basaltic glass and peridotite. The results show different onset time of calcite nucleation and thus different extent of carbonate coverage with elapsed time depending on silicate phase. Within the same timeframe olivine, enstatite and peridotite (mainly composed of Mg-rich olivine) were the most covered by calcite precipitations, followed by augite, labradorite and finally basaltic glass. All calcite growth took place on the silicate surface including on the basaltic glass. Kinetics favor calcite nucleation growth on the orthorhombic minerals (enstatite and olivine) over the monoclinic and triclinic minerals. Least calcite was found on the glass, which has no ordered silicate structure. Heterotrophic bacteria, Pseudomonas reactans was extracted from one of the monitoring wells at HellisheiĂ°i, and then separated, purified and cultured in the laboratory. Its optimal growth conditions were found to be 5-37 ÂșC and pH 7.0-8.2 on Brain Heart Broth nutrient. Being a common water- and soil bacteria it offered a good candidacy to test what could be expected of heterotrophic bacteria in general when storing CO2 in a natural aquifers like the one at the HellisheiĂ°i site, in Iceland. Basaltic glass dissolution rates were measured at 25 ÂșC in newly developed Bacterial Mixed-Flow reactors (BMFR) in buffer solutions carrying 0.1-0.4 g/L of dead bacteria and 0.9-19 g/L of live bacteria at 4 = pH =10. The results show that the presence had either no or a slightly rate-limiting effect. The overall conclusion is that neither the carbonate coatings nor the bacteria had major impact on the measured dissolution rates of the primary silicate phases, thus their effect are expected to be negligible on the CO2 sequestration process in basalt. Crystalline basalt might be faster covered by calcium carbonate, but also basaltic glass can act as a nucleation platform for calcite nucleation
A multicenter randomized controlled trial evaluating the effect of small stitches on the incidence of incisional hernia in midline incisions
Contains fulltext :
95575.pdf (publisher's version ) (Open Access)BACKGROUND: The median laparotomy is frequently used by abdominal surgeons to gain rapid and wide access to the abdominal cavity with minimal damage to nerves, vascular structures and muscles of the abdominal wall. However, incisional hernia remains the most common complication after median laparotomy, with reported incidences varying between 2-20%. Recent clinical and experimental data showed a continuous suture technique with many small tissue bites in the aponeurosis only, is possibly more effective in the prevention of incisional hernia when compared to the common used large bite technique or mass closure. METHODS/DESIGN: The STITCH trial is a double-blinded multicenter randomized controlled trial designed to compare a standardized large bite technique with a standardized small bites technique. The main objective is to compare both suture techniques for incidence of incisional hernia after one year. Secondary outcomes will include postoperative complications, direct costs, indirect costs and quality of life. A total of 576 patients will be randomized between a standardized small bites or large bites technique. At least 10 departments of general surgery and two departments of oncological gynaecology will participate in this trial. Both techniques have a standardized amount of stitches per cm wound length and suture length wound length ratio's are calculated in each patient. Follow up will be at 1 month for wound infection and 1 year for incisional hernia. Ultrasound examinations will be performed at both time points to measure the distance between the rectus muscles (at 3 points) and to objectify presence or absence of incisional hernia. Patients, investigators and radiologists will be blinded during follow up, although the surgeon can not be blinded during the surgical procedure. CONCLUSION: The STITCH trial will provide level 1b evidence to support the preference for either a continuous suture technique with many small tissue bites in the aponeurosis only or for the commonly used large bites technique
Ătude expĂ©rimentale de la carbonatation du basalte
The increasing levels of CO2 in the atmosphere and the potential dangers this pose to the Earth through climate change, ocean acidification and sea-level rise has lead to a substantial number of projects attempting to find a safe and benign way to capture and store CO2 in geological formations, also referred to as the CCS (Carbon Capture Storage) technology. One of these CCS attempts is currently taking place in Iceland at the geothermal power plant HellisheiĂ°i, located close to the capital Reykjavik (the CarbFix project). CO2 and other gasses (H2S, N2, H2, CH4) are waste products of the geothermal energy exploitation and the aim is with time to store all of this anthropogenic-made CO2 in the basaltic formations underlying HellisheiĂ°i. The CO2 is dissolved in groundwater as it is pumped down to 350 meters depth and then injected into mixed horizons of basaltic glass and crystalline basalt. The basaltic rocks are characterized by high contents of divalent cations like Mg2+, Fe2+ and Ca2+ and relatively fast dissolution rates. The acidic CO2-loaded water will dissolve the basalt thereby releasing cations, which can react with the aqueous carbonate ions to form carbonate minerals (magnesite, siderite, calcite, ankerite and Ca-Mg-Fe solid solutions). The rate-limiting step of this carbon sequestration process is thought to be the dissolution of basaltic rocks, thus any effect that could potentially limit basalt dissolution would be detrimental to the overall CO2 sequestration process. My part of the CarbFix project has been to look at the effects the formation of calcium carbonate coatings would have on the dissolution of the primary phase, in this case basaltic glass and the clinopyroxene diopside, so there would be a glass phase to compare with the results of a mineral phase. Furthermore, a series of experiments were conducted where we tested the primary mineral structure's affect on calcite nucleation. This was done in order to test if different silicate structures would lead to different extent of calcite nucleation and growth. Finally, extensive series were conducted on the dissolution of basaltic glass in the presence of dead and live heterotrophic bacteria, Pseudomonas reactans in order to determine the potential effect of bacteria on the carbon storage effort at the HellisheiĂ°i site. The basaltic glass and diopside dissolution experiments were run at 25 and 70 ÂșC and pH 7-8 in mixed-flow reactors connected to solutions containing CaCl2±NaHCO3 with ionic strengths > 0.03 mol/kg. Two sets of experimental series were run simultaneously, one series called the "precipitation" experiments in which the solution inside the reactor was supersaturated with respect to calcite, and the other series called the "control" experiments, where PHREEQC modeling foretold no major secondary mineral formation. By this, it was possible to compare dissolution rates of basaltic glass and diopside at 25 ÂșC with and without calcium carbonate and other secondary mineral formation in order to deduce the effect on their dissolution rates. Scanning electron microscope images showed substantial amounts of calcium carbonate had precipitated in the "precipitation" experiments, but in the case of basaltic glass the primary growth appeared as big, discrete cluster of calcite and aragonite with no growth on the glass itself. Opposed to this, several of the diopside crystals were extensively overgrown by calcite coatings and no aragonite was found. In neither cases did the presence of calcite/aragonite have an effect on the dissolution rates of basaltic glass and diopside when compared to the "control' dissolution rates. It appears the discontinuous cover of the carbonate allows the ions of the primary phases to continue to diffuse through the secondary layer unhindered. To further assess the effect of silicate surface on the nucleation of calcite, the dissolution rates of six selected silicate minerals and rocks were measured in mixed-flow reactors in solutions supersaturated with respect to calcite at 25 ÂșC and pH ~9.1. The silicate phases were: Mg-rich olivine, enstatite, augite, labradorite, basaltic glass and peridotite. The results show different onset time of calcite nucleation and thus different extent of carbonate coverage with elapsed time depending on silicate phase. Within the same timeframe olivine, enstatite and peridotite (mainly composed of Mg-rich olivine) were the most covered by calcite precipitations, followed by augite, labradorite and finally basaltic glass. All calcite growth took place on the silicate surface including on the basaltic glass. Kinetics favor calcite nucleation growth on the orthorhombic minerals (enstatite and olivine) over the monoclinic and triclinic minerals. Least calcite was found on the glass, which has no ordered silicate structure. Heterotrophic bacteria, Pseudomonas reactans was extracted from one of the monitoring wells at HellisheiĂ°i, and then separated, purified and cultured in the laboratory. Its optimal growth conditions were found to be 5-37 ÂșC and pH 7.0-8.2 on Brain Heart Broth nutrient. Being a common water- and soil bacteria it offered a good candidacy to test what could be expected of heterotrophic bacteria in general when storing CO2 in a natural aquifers like the one at the HellisheiĂ°i site, in Iceland. Basaltic glass dissolution rates were measured at 25 ÂșC in newly developed Bacterial Mixed-Flow reactors (BMFR) in buffer solutions carrying 0.1-0.4 g/L of dead bacteria and 0.9-19 g/L of live bacteria at 4 †pH â€10. The results show that the presence had either no or a slightly rate-limiting effect. The overall conclusion is that neither the carbonate coatings nor the bacteria had major impact on the measured dissolution rates of the primary silicate phases, thus their effect are expected to be negligible on the CO2 sequestration process in basalt. Crystalline basalt might be faster covered by calcium carbonate, but also basaltic glass can act as a nucleation platform for calcite nucleation.La concentration croissante de CO2 dans l'atmosphĂšre et les dangers potentiels qu'elle reprĂ©sente pour la terre au travers des changements climatiques, l'acidification des ocĂ©ans et l'Ă©lĂ©vation du niveau de la mer a conduit Ă un certain nombre de projets qui tentent de trouver un moyen sĂ»r et inoffensifs pour capturer et stocker le CO2 dans des formations gĂ©ologiques. Une de ces tentatives se dĂ©roule actuellement en Islande Ă la centrale gĂ©othermique HellisheiĂ°i, situĂ©e Ă proximitĂ© de la capitale, Reykjavik (le projet CarbFix). Le dioxyde de carbone et d'autres gaz comme H2S, N2, H2, CH4, et Ar sont des sous-produits de l'exploitation de l'Ă©nergie gĂ©othermique et l'objectif est de stocker tout ce CO2 dans les formations basaltiques qui se situent sous HellisheiĂ°i. Le CO2 est dissous dans un courant d'eau injectĂ© par pompage dans des puits jusqu'Ă Ă 350 mĂštres de profondeur et qui s'Ă©coule ensuite au sein d'horizons mixtes de verre basaltique et de basalte cristallin. Les roches basaltiques sont caractĂ©risĂ©es par des teneurs Ă©levĂ©es en cations divalents comme Mg2+, Fe2+ et Ca2+ et des vitesses de dissolution relativement rapides. L'eau acide chargĂ©e en CO2 dissout le basalte, libĂ©rant ainsi des cations qui peuvent rĂ©agir avec les ions carbonates pour former des minĂ©raux carbonatĂ©s (magnĂ©site, sidĂ©rite, calcite, ankĂ©rite ainsi que des solutions solides (Ca-Mg-Fe)CO3)). Si on admet que c'est la dissolution des roches basaltiques qui contrĂŽle ce processus de sĂ©questration du carbone, on peut en dĂ©duire que tout ce qui pourra limiter cette dissolution sera prĂ©judiciable Ă l'ensemble du processus de confinement du CO2. Mon rĂŽle dans le projet CarbFix a Ă©tĂ© d'examiner les effets de la formation de revĂȘtements de carbonate de calcium sur la dissolution des phases primaires de basalte. Je me suis concentrĂ©e sur le verre basaltique et le clinopyroxĂšne, diopside, afin de comparer des phases cristallines et non cristallines. En outre, une sĂ©rie d'expĂ©riences ont Ă©tĂ© menĂ©es pour Ă©tudier l'effet de la structure du minĂ©ral primaire sur la nuclĂ©ation de calcite. Ces expĂ©riences ont Ă©tĂ© faites pour vĂ©rifier si les diffĂ©rentes structures de silicate conduiraient Ă une diffĂ©rente Ă©tendue de la nuclĂ©ation et croissance de la calcite Ă la surface des silicates. Enfin, de nombreuses expĂ©riences de dissolution de verre basaltique ont Ă©tĂ© menĂ©es en prĂ©sence de bactĂ©ries hĂ©tĂ©rotrophes mortes et vivantes, Pseudomonas reactans, afin de dĂ©terminer l'effet des bactĂ©ries sur la dissolution des roches dans le systĂšme des eaux souterraines du site HellisheiĂ°i. Les expĂ©riences de dissolution de verre basaltique et de diopside ont Ă©tĂ© rĂ©alisĂ©s Ă 25 et 70 °C pour un pH de 7-8 dans des rĂ©acteurs Ă circulation alimentĂ©s en solutions de forces ioniques > 0,03 mol / kg contenant CaCl2 ± NaHCO3. Deux sĂ©ries d'essais ont Ă©tĂ© menĂ©s simultanĂ©ment, une sĂ©rie appelĂ©e essais de 'prĂ©cipitations' au cours de laquelle la solution dans le rĂ©acteur Ă©tait sursaturĂ©e par rapport Ă la calcite, et l'autre sĂ©rie appelĂ©e essais de 'contrĂŽle', pour laquelle la modĂ©lisation PHREEQC ne prĂ©voyait pas formation de minĂ©raux secondaires. Ainsi, il a Ă©tĂ© possible de comparer les vitesses de dissolution du verre basaltique et du diopside Ă 25 °C avec et sans la formation de carbonate de calcium et d'autres minĂ©raux secondaires afin d'en dĂ©duire leur effet sur les vitesses de dissolution. Les images de microscopie Ă©lectronique Ă balayage ont montrĂ© que des quantitĂ©s importantes de carbonate de calcium ont prĂ©cipitĂ© au cours des expĂ©riences de 'prĂ©cipitations' mais, dans le cas du verre basaltique la croissance primaire se prĂ©sente sous forme gros amas discrets de calcite et d'aragonite qui ne se forment pas sur le verre lui-mĂȘme. Par contre, plusieurs des cristaux de diopside ont Ă©tĂ© largement envahis par des revĂȘtements de calcite sans aragonite dĂ©celable. Dans les deux cas, la prĂ©sence de calcite / aragonite n'a pas eu d'incidence sur les vitesses de dissolution du verre basaltique et de diopside qui sont les mĂȘmes que celles mesurĂ©es dans la sĂ©rie 'contrĂŽle'. Il semblerait que la couverture discontinue et poreuse de carbonates permet aux ions des phases primaires de continuer Ă diffuser sans entrave Ă travers la couche secondaire. Pour mieux Ă©valuer l'effet de la surface des silicates sur la nuclĂ©ation de la calcite, les vitesses de dissolution de six minĂ©raux et roches silicatĂ©s ont Ă©tĂ© mesurĂ©es Ă 25 °C dans des rĂ©acteurs Ă circulation en prĂ©sence de solutions de pH ~ 9,1 sursaturĂ©es par rapport Ă la calcite. Les phases silicatĂ©es Ă©taient les suivantes: olivine, enstatite, augite, labradorite, verre basaltique et pĂ©ridotite. Les rĂ©sultats montrent que le temps d'induction pour la nuclĂ©ation de calcite et l'Ă©tendue de la couverture de carbonatĂ©e avec le temps varient selon la phase silicatĂ©e. Dans un mĂȘme laps de temps l'olivine, l'enstatite et la pĂ©ridotite (principalement composĂ© d'olivine riche en Mg) Ă©taient les plus couvertes par les prĂ©cipitations de calcite, suivis par l'augite, la labradorite et enfin le verre basaltique. Toute la croissance de calcite a eu lieu sur la surface du silicate, y compris sur le verre basaltique. La cinĂ©tique favorise la croissance de calcite par nuclĂ©ation sur les minĂ©raux orthorhombiques (enstatite et olivine) par rapport aux minĂ©raux monocliniques et tricliniques. Les plus faibles quantitĂ©s de calcite ont Ă©tĂ© trouvĂ©es sur le verre qui n'a pas de structure silicatĂ©e ordonnĂ©e. Des bactĂ©ries hĂ©tĂ©rotrophes, Pseudomonas reactans ont Ă©tĂ© extraites de l'un des puits de contrĂŽle Ă HellisheiĂ°i et ont ensuite Ă©tĂ© sĂ©parĂ©es, purifiĂ©es et cultivĂ©es en laboratoire. Avec le bouillon de culture utilisĂ©, les conditions de croissance optimales de cette bactĂ©rie sont 5-37 °C et un pH de 7,0 Ă 8. Cette bactĂ©rie, trĂšs commune dans l'eau et le sol, est une bonne candidate pour tester l'impact des bactĂ©ries hĂ©tĂ©rotrophes en gĂ©nĂ©ral lors de la sĂ©questration du CO2 dans un aquifĂšre naturel comme en Islande. Les vitesses de dissolution du verre basaltique ont Ă©tĂ© mesurĂ©s Ă 25 °C dans des nouveaux rĂ©acteurs Ă circulation permettant d'opĂ©rer en prĂ©sence de bactĂ©ries (BMFR) dans des solutions tamponnĂ©es transportant 0,1 Ă 0,4 g/L de bactĂ©ries mortes et 0,9 Ă 19 g/L de bactĂ©ries vivantes Ă 4 †pH †10. Les rĂ©sultats ont montrĂ© que la prĂ©sence de ces bactĂ©ries n'avait quasiment pas d'effet effet sur la vitesse de dissolution. La conclusion gĂ©nĂ©rale de cette Ă©tude est que ni les revĂȘtements de carbonate, ni les bactĂ©ries n'ont d'impact majeur sur les vitesses de dissolution des phases primaires silicatĂ©es. Ainsi, leur effet devrait ĂȘtre nĂ©gligeable sur le processus de sĂ©questration du CO2 sur le site HellisheiĂ°i en Islande. Le basalte cristallin pourrait ĂȘtre recouvert plus rapidement en carbonate de calcium, mais le verre basaltique pourrait aussi servir de support pour la nuclĂ©ation de calcite
Ătude expĂ©rimentale de la carbonatation du basalte
TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF
Geofysiska data frÄn Lockne-strukturen, JÀmtland, Sverige
Resistivity data The resistivity data were collected with an ABEM Terrameter LS-CVES instrument along eleven profiles of variable length from 400 m to 1600 m. The distance between the electrodes was 5 m and a roll along strategy was adapted for longer profiles than 400 m. To correct for the effect of topography each profile was levelled by using a Sokkisha C3E. Profiles close to a benchmark altitude point from the Geodetic Survey of Sweden get correct absolute values, but for most of the profiles a perfect tie to a benchmark point was not possible. In these cases, the Lidar-height model was used. However, the relative height differences along all profiles are correct with centimetre precision. The resistivity measurements were performed during the summers 2013 to 2016 by Erik Sturkell, Jens Ormö, Eric Hegardt, Gabrielle Stockmann, Erik Meland, Ă
sa Frisk and Pierre Etienne Martin. Data processing was made with the software Res2Dinv version 3.5 from Geotomo Software and the result is presented in a pseudo section. Data for the Res2Dinv processing, the number of iterations runed and what the absolute error are given in supplementary information table S02 (which is also included in the repository). After the processed resistivity data were corrected for the topography, the results are presented in pseudo profiles along with interpretations shown in Figure 5a-c (main article), and additional data are available in the Supplementary information (which is also included in the repository). The processed resistivity data were sorted into ranges and connected to respective lithology. To present a calculation and inversion of electrical measurements as function of position (x, y, z) and electrode separation, the apparent resistivity is presented in a so called pseudo section.MotstÄndsmÀtningar MotstÄndsdata insamlades med ABEM Terrameter LS-CVES lÀngs profiler av varierande lÀngder, 400 m till 1600 m. AvstÄndet mellan elektroderna var 5 m och en "roll along"-metod tillÀmpades för profiler lÀngre Àn 400 m. PrecisionsavvÀgning genomfördes lÀngs profilerna för att kunna genomföra en topografisk korrektion. För avvÀgningen anvÀndes avvÀgningsinstrumentet Sokkisha C3E
Geothermometry and waterârock interaction modelling at HafralĂŠkur: Possible implications of temperature and CO2 on hydrogeochemical changes previously linked to earthquakes in northern Iceland
The low enthalpy (T < 150 °C) groundwater in the HA01 borehole at HafralĂŠkur has a long time series (2008â2018) of chemical and isotopic data. In the previous studies, the variations in chemical and isotope parameters were statistically related to seismic activity. However, the possible effect of temperature has not yet been evaluated. To fill this gap, the results obtained from the classical geothermometric equations (silica solid phases, Na/K, Na-K-Ca) were compared. However, considering that the use of classical geothermometry using the Na/K ratio or silica solid phases solubility is limited by the presence of clay minerals and alkaline conditions (i.e., the presence of pH-dependant silicate anions), new equilibria reactions between labradorite, zeolites (analcime, stilbite) and the activity of the dissolved species in the fluid are presented to overcome this problem. In addition, kinetic reaction path models are presented to trace the possible role of both temperature and CO2 during the most evident chemical variations during earthquakes