642 research outputs found

    Assessing the Milky Way Satellites Associated with the Sagittarius Dwarf Spheroidal Galaxy

    Full text link
    Numerical models of the tidal disruption of the Sagittarius (Sgr) dwarf galaxy have recently been developed that for the first time simultaneously satisfy most observational constraints on the angular position, distance, and radial velocity trends of both leading and trailing tidal streams emanating from the dwarf. We use these dynamical models in combination with extant 3-D position and velocity data for Galactic globular clusters and dSph galaxies to identify those Milky Way satellites that are likely to have originally formed in Sgr and been stripped from it during its extended interaction with the Milky Way. We conclude that the globular clusters Arp 2, M 54, NGC 5634, Terzan 8, and Whiting 1 are likely associated with the Sgr dwarf, and that Berkeley 29, NGC 5053, Pal 12, and Terzan 7 may be as well. The initial Sgr system therefore may have contained 5-9 globular clusters, corresponding to a specific frequency S_N = 5 - 9 for an initial Sgr luminosity M_V = -15.0. Our result is consistent with the 8\pm2 Sgr globular clusters expected from statistical modeling of the Galactic globular cluster distribution and the corresponding false-association rate due to chance alignments with the Sgr streams. These clusters are consistent with previous reconstructions of the Sgr age-metallicity relation, and show no evidence for a second-parameter effect shaping their horizontal branch morphologies. We find no statistically significant evidence to suggest that any of the recently discovered population of ultra-faint dwarf galaxies are conclusively associated with the Sgr tidal streams. (Abridged).Comment: 25 pages, 12 figures. Accepted for publication in ApJ. Version with full-resolution figures is available at http://www.astro.ucla.edu/~drlaw/Papers/Sgr_clusters.pd

    The inner structure and kinematics of the Sagittarius dwarf galaxy as a product of tidal stirring

    Full text link
    The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present known orbit of the dwarf, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10^8 M_sun. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10^10 M_sun, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.Comment: 14 pages, 14 figures, minor changes to match the version published in Ap
    corecore