13 research outputs found

    PRACTICE OF CAD AND CAE DESIGN IN THE FIELD OF PLASMA TECHNOLOGIES

    Get PDF
    The effectiveness of automated plasma torch design methods can be improved by integrating design and engineering analysis technologies. The features of CAD and CAE technologies for designing plasma torches are considered. Shows examples of the design of plasma torches for cutting metals and waste treatment with the use of digital technologies.Эффективность автоматизированных методов проектирования плазмотронов можно повысить за счет интеграции технологий проектирования и инженерного анализа. Рассмотрены особенности CAD и CAE технологий проектирования плазмотронов. Показаны примеры проектирования плазмотронов для резки металлов и обезвреживания отходов с применением цифровых технологий

    Dynamics of Formamide Ionic Solutions Investigated by Ultrafast Optical Kerr Effect

    No full text
    Molecular dynamics of formamide solutions of alkali metal halide salts were investigated using the time-resolved ultrafast optical Kerr effect (OKE) to observe the effects of ion solvation on the dynamics of a nonaqueous high-permittivity H-bonding solvent. The picosecond orientational and ultrafast intermolecular dynamics of liquid formamide as a function of concentration of NaI and KI are compared with the temperature effect on the pure solvent. The effect of a range of other salts at fixed concentration is also recorded. Transient OKE and corresponding low-frequency (THz) Raman spectra of the solutions revealed differences in the solvent dynamics caused by ion solvation. Increasing concentrations of NaI and KI have the effect of slowing down the diffusive reorientation and reducing the librational frequencies of formamide, with cation-related effects observed on the THz Raman spectrum. These effects are discussed in terms of an ion perturbation of the H-bonding structure in the solution. This approach provides a valuable means of investigating the dynamics, structure, and interactions in complex, interacting systems

    Hydroxide Hydrogen Bonding: Probing the Solvation Structure through Ultrafast Time Domain Raman Spectroscopy

    No full text
    The mechanism of charge transport in aqueous media is critical in molecular, materials, and life sciences. The structure of the solvated hydroxide ion has been an area of some controversy. Polarization-resolved ultrafast time domain polarizability relaxation is used here to resolve the terahertz frequency Raman spectrum of hydroxide solutions. The measurements reveal the totally symmetric hydrogen-bond stretching (HO<sup>–</sup>···HOH) mode of the solvated hydroxide, permitting an experimental measurement of the bond force constant. The observed polarized Raman spectra are compared with those obtained from DFT calculations performed on HO<sup>–</sup>(H<sub>2</sub>O)<sub><i>n</i></sub> clusters. Good agreement between the observed frequency and the polarization dependence is found for the <i>n</i> = 3 or 4 clusters, particularly for those in which the solvating water molecules adopt a planar structure. The frequency of the symmetric stretch increases with concentration, consistent with an effect of ionic strength on either the H-bond or the structure of the cluster

    Solvent Tuning Excited State Structural Dynamics in a Novel Bianthryl

    Get PDF
    Symmetry breaking charge separation (SBCS) is central to photochemical energy conversion. The widely studied 9,9-bianthryl (9,9′BA) is the prototype, but the role of bianthryl structure is hardly investigated. Here we investigate excited state structural dynamics in a bianthryl of reduced symmetry, 1,9-bianthryl (1,9′BA), through ultrafast electronic and vibrational spectroscopy. Resonance selective Raman in polar solvents reveals a Franck–Condon state mode that disappears concomitant with the rise of ring breathing modes of radical species. Solvent-dependent dynamics show that CS is driven by solvent orientational motion, as in 9,9′BA. In nonpolar solvents the excited state undergoes multistep structural relaxation, including subpicosecond Franck–Condon state decay and biexponential diffusion-controlled structural evolution to a distorted slightly polar state. These data suggest two possible routes to SBCS; the established solvent driven pathway in rapidly relaxing polar solvents and, in slowly relaxing media, initial intramolecular reorganization to a polar structure which drives solvent orientational relaxation

    Solvent Tuning Excited State Structural Dynamics in a Novel Bianthryl

    No full text
    Symmetry breaking charge separation (SBCS) is central to photochemical energy conversion. The widely studied 9,9-bianthryl (9,9′BA) is the prototype, but the role of bianthryl structure is hardly investigated. Here we investigate excited state structural dynamics in a bianthryl of reduced symmetry, 1,9-bianthryl (1,9′BA), through ultrafast electronic and vibrational spectroscopy. Resonance selective Raman in polar solvents reveals a Franck–Condon state mode that disappears concomitant with the rise of ring breathing modes of radical species. Solvent-dependent dynamics show that CS is driven by solvent orientational motion, as in 9,9′BA. In nonpolar solvents the excited state undergoes multistep structural relaxation, including subpicosecond Franck–Condon state decay and biexponential diffusion-controlled structural evolution to a distorted slightly polar state. These data suggest two possible routes to SBCS; the established solvent driven pathway in rapidly relaxing polar solvents and, in slowly relaxing media, initial intramolecular reorganization to a polar structure which drives solvent orientational relaxation

    Ultrafast Studies of the Photophysics of Cis and Trans States of the Green Fluorescent Protein Chromophore

    No full text
    Cis–trans photoisomerization is proposed as a key process in the photoswitching of some photoactivatable fluorescent proteins. Here we present ultrafast fluorescence measurements of the model GFP chromophore (HBDI) in the cis state and in a mixture of the cis and trans states. Our results demonstrate that the mean lifetimes of the cis and trans states are remarkably similar. Therefore, the specific isomer of the chromophore cannot be solely responsible for the different photophysics of the bright and dark states of photoactive proteins, which must therefore be due to differential interactions between the different isomers of the chromophore and the protein

    Ultrafast Studies of the Photophysics of Cis and Trans States of the Green Fluorescent Protein Chromophore

    No full text
    Cis–trans photoisomerization is proposed as a key process in the photoswitching of some photoactivatable fluorescent proteins. Here we present ultrafast fluorescence measurements of the model GFP chromophore (HBDI) in the cis state and in a mixture of the cis and trans states. Our results demonstrate that the mean lifetimes of the cis and trans states are remarkably similar. Therefore, the specific isomer of the chromophore cannot be solely responsible for the different photophysics of the bright and dark states of photoactive proteins, which must therefore be due to differential interactions between the different isomers of the chromophore and the protein

    Excited State Structure and Dynamics of the Neutral and Anionic Flavin Radical Revealed by Ultrafast Transient Mid-IR to Visible Spectroscopy

    No full text
    Neutral and anionic flavin radicals are involved in numerous photochemical processes and play an essential part in forming the signaling state of various photoactive flavoproteins such as cryptochromes and BLUF domain proteins. A stable neutral radical flavin has been prepared for study in aqueous solution, and both neutral and anion radical states have been stabilized in the proteins flavodoxin and glucose oxidase. Ultrafast transient absorption measurements were performed in the visible and mid-infrared region in order to characterize the excited state dynamics and the excited and ground state vibrational spectra and to probe the effect of the protein matrix on them. These data are compared with the results of density functional theory calculations. Excited state decay dynamics were found to be a strong function of the protein matrix. The ultrafast electron transfer quenching mechanism of the excited flavin moiety in glucose oxidase is characterized by vibrational spectroscopy. Such data will be critical in the ongoing analysis of the photocycle of photoactive flavoproteins

    Proteins in Action: Femtosecond to Millisecond Structural Dynamics of a Photoactive Flavoprotein

    No full text
    Living systems are fundamentally dependent on the ability of proteins to respond to external stimuli. The mechanism, the underlying structural dynamics, and the time scales for regulation of this response are central questions in biochemistry. Here we probe the structural dynamics of the BLUF domain found in several photoactive flavoproteins, which is responsible for light activated functions as diverse as phototaxis and gene regulation. Measurements have been made over 10 decades of time (from 100 fs to 1 ms) using transient vibrational spectroscopy. Chromophore (flavin ring) localized dynamics occur on the pico- to nanosecond time scale, while subsequent protein structural reorganization is observed over microseconds. Multiple time scales are observed for the dynamics associated with different vibrations of the protein, suggesting an underlying hierarchical relaxation pathway. Structural evolution in residues directly H-bonded to the chromophore takes place more slowly than changes in more remote residues. However, a point mutation which suppresses biological function is shown to ‘short circuit’ this structural relaxation pathway, suppressing the changes which occur further away from the chromophore while accelerating dynamics close to it

    Femtosecond to Millisecond Dynamics of Light Induced Allostery in the <i>Avena sativa</i> LOV Domain

    No full text
    The rational engineering of photosensor proteins underpins the field of optogenetics, in which light is used for spatiotemporal control of cell signaling. Optogenetic elements function by converting electronic excitation of an embedded chromophore into structural changes on the microseconds to seconds time scale, which then modulate the activity of output domains responsible for biological signaling. Using time-resolved vibrational spectroscopy coupled with isotope labeling, we have mapped the structural evolution of the LOV2 domain of the flavin binding phototropin <i>Avena sativa</i> (AsLOV2) over 10 decades of time, reporting structural dynamics between 100 fs and 1 ms after optical excitation. The transient vibrational spectra contain contributions from both the flavin chromophore and the surrounding protein matrix. These contributions are resolved and assigned through the study of four different isotopically labeled samples. High signal-to-noise data permit the detailed analysis of kinetics associated with the light activated structural evolution. A pathway for the photocycle consistent with the data is proposed. The earliest events occur in the flavin binding pocket, where a subpicosecond perturbation of the protein matrix occurs. In this perturbed environment, the previously characterized reaction between triplet state isoalloxazine and an adjacent cysteine leads to formation of the adduct state; this step is shown to exhibit dispersive kinetics. This reaction promotes coupling of the optical excitation to successive time-dependent structural changes, initially in the β-sheet and then α-helix regions of the AsLOV2 domain, which ultimately gives rise to Jα-helix unfolding, yielding the signaling state. This model is tested through point mutagenesis, elucidating in particular the key mediating role played by Q513
    corecore