63 research outputs found
Clock synchronization with pulsed single photon sources
Photonic quantum technology requires precise, time-resolved identification of
photodetection events. In distributed quantum networks with spatially separated
and drifting time references, achieving high precision is particularly
challenging. Here we build on recent advances of using single-photons for time
transfer and employ and quantify a fast postprocessing scheme designed to
pulsed single-photon sources. We achieve an average root mean square
synchronization jitter of 3.0 ps and a stability comparable to systems with
ultra-stable clocks (54 ps at 1 second integration time, in terms of Allan time
deviation). Our algorithm compensates substantial clock imperfections from
crystal oscillators, is superior for low signal scenarios, and allows the
quantum communication networks to transmit data simultaneously to time
transfer
Frequency conversion of structured light
We demonstrate the coherent frequency conversion of structured light, optical
beams in which the phase varies in each point of the transverse plane, from the
near infrared (803nm) to the visible (527nm). The frequency conversion process
makes use of sum-frequency generation in a periodically poled lithium niobate
(ppLN) crystal with the help of a 1540-nm Gaussian pump beam. We perform
far-field intensity measurements of the frequency-converted field, and verify
the sought-after transformation of the characteristic intensity and phase
profiles for various input modes. The coherence of the frequency-conversion
process is confirmed using a mode-projection technique with a phase mask and a
single-mode fiber. The presented results could be of great relevance to novel
applications in high-resolution microscopy and quantum information processing
Sources of photonic entanglement for applications in space
The nonlocal correlations of entangled systems are a feature inherent to quantum theory that is fundamentally at odds with our common-sense notions of realism and locality. Additionally, entanglement is an essential resource for numerous quantum communication protocols such as quantum teleportation and quantum dense coding, quantum cryptography, as well as quantum-enhanced metrological schemes and quantum computation. These quantum schemes allow for significant gains in performance over their classical counterparts, and a commercial implementation of protocols utilizing entangled photons thus seems likely in the foreseeable future. A key challenge to be addressed, in order to achieve a global-scale implementation of quantum-enhanced protocols, is the distribution of entanglement over long distances.
While photons are in many ways ideal carriers of quantum information, their distribution over long distances is significantly impeded by losses. At present, loss in optical fiber links or atmospheric attenuation and obstructions of the line of sight in terrestrial free-space links limit the distribution of photonic entanglement to several hundred kilometers. Installing sources of photons with quantum correlations on space platforms would allow such distance limitations to be overcome. This would not only lead to the first global-scale implementation of quantum communication protocols, but would also create the opportunity for a completely new class of quantum experiments in a general relativistic framework.
State-of-the-art laboratory sources of entangled photons are generally ill-suited for applications in harsh environments such as space, either owing to the use of bulky lasers, the requirement for active interferometric stabilization, or insufficient photon-pair-generation efficiency. Thus, an integral milestone for the experimental implementation of quantum communication protocols over satellite links is the development of robust, space-proof sources of entangled photons with high brightness and entanglement visibility.
This thesis is intended to bridge laboratory experiments and real-world applications of quantum entanglement in harsh operational conditions. To this end, the main results of this thesis are:
Highly efficient sources of polarization-entangled photons for the distribution of entanglement via long-distance free-space links. The sources are very robust and compact, and incorporate only components which are compliant with the severe requirements of space flight and operation.
Optimization of spectral properties and fiber-coupling efficiency of photon pairs generated via spontaneous parametric down-conversion in bulk periodically poled potassium titanyl phosphate. The results of these studies are of great practical relevance for the development of an ultra-stable and efficient entangled photon source.
Engineering and characterization of field-deployable polarization-entangled photon sources with high visibility (>99%) and record pair-detection rates (>3 million detected pairs per mW of pump power). As a result of the performance demonstrated, the sources developed have been incorporated into ongoing experiments, for example in quantum nanophotonics and quantum communications, and will provide an enabling tool for future real-world applications.Las correlaciones no locales de sistemas entrelazados son una característica inherente a la teoría cuántica que está fundamentalmente en desacuerdo con nuestra noción intuitiva de realismo y localidad. Además, el entrelazamiento es un recurso esencial en numerosos protocolos de comunicaciones cuánticas, como por ejemplo la teleportación cuántica o la criptografía cuántica, en esquemas metrológicos cuánticos y en computación cuántica. Todos estos esquemas cuánticos permiten mejoras significativas de rendimiento con respecto a sus homólogos clásicos, por lo tanto, parece previsible que en un futuro próximo veamos implementaciones comerciales de protocolos que utilicen fotones entrelazados. Un reto fundamental con el fin de lograr una implementación a escala global del entrelazamiento cuántico es su distribución a grandes distancias. A pesar de que los fotones son portadores ideales de información cuántica, su distribución a través de largas distancias está significativamente limitada por pérdidas. En la actualidad, las pérdidas introducidas por las fibras ópticas, la atenuación atmosférica, o la dificultad de obtener una línea de visión directa en enlaces terrestres limitan la distribución de entrelazamiento fotónico a varios cientos de kilómetros. La instalación de fuentes de fotones con correlaciones cuánticas en plataformas espaciales permitiría superar tales limitaciones de distancia. Esto no sólo daría lugar a la primera aplicación de protocolos de comunicación cuántica a escala mundial, sino que también daría la oportunidad de llevar a cabo un nuevo tipo de experimentos cuánticos en un marco de la relatividad general. Las fuentes de fotones entrelazados que podemos encontrar hoy en día en los laboratorios de óptica cuántica no están en general preparadas para ser usadas en entornos hostiles, como podría ser el espacio, ya sea por la utilización de láseres voluminosos, la necesidad de estabilizar interferómetros activamente o simplemente por tener una eficiencia insuficiente. Por lo tanto, un prerrequisito para lograr la implementación experimental de protocolos de comunicación cuántica a través de enlaces satelitales es el desarrollo de fuentes de fotones entrelazados que sean robustas, compatibles con operación espacial, y con alto brillo y visibilidad. En esta tesis se pretende conectar los experimentos de laboratorio en entrelazamiento cuántico y las aplicaciones en entornos operacionales desfavorables en el mundo real. Los principales resultados son: ¿ Fuentes de fotones entrelazados en polarización de alta eficiencia para la distribución de entrelazamiento a través de enlaces en espacio libre de larga distancia. Las fuentes son muy robustas y compactas, y utilizan únicamente componentes que son compatibles con estrictos requisitos de vuelo y operaciones espaciales. - Optimización de las propiedades espectrales y la eficiencia de acoplamiento a fibra monomodo de pares de fotones generados a través de spontaneous parametric down-conversion en titanil fosfato de potasio polarizado periódicamente. Los resultados de estos estudios son de gran importancia para el desarrollo de una fuente de fotones entrelazados ultra-estable y eficiente. - Desarrollo y caracterización de fuentes de fotones entrelazados en polarización con alta visibilidad (> 99%) y alto brillo (> 3 millones de pares detectados por mW de potencia de bombeo). Como resultado del rendimiento obtenido, las fuentes desarrolladas en esta tesis ya están siendo utilizadas en experimentos en curso, como por ejemplo en nanofotónica cuántica y en comunicaciones cuánticas, y serán un elemento esencial en futuras aplicaciones
Enhancing Purity of Single Photons in Parametric Down-Conversion through Simultaneous Pump Beam and Crystal Domain Engineering
Spontaneous parametric down-conversion (SPDC) has shown great promise in the
generation of pure and indistinguishable single photons. Photon pairs produced
in bulk crystals are highly correlated in terms of transverse space and
frequency. These correlations limit the indistinguishability of photons and
result in inefficient photon sources. Domain-engineered crystals with a
Gaussian nonlinear response have been explored to minimize spectral
correlations. Here, we study the impact of such domain engineering on spatial
correlations of generated photons. We show that crystals with a Gaussian
nonlinear response reduce the spatial correlations between photons. However,
the Gaussian nonlinear response is not sufficient to fully eliminate the
spatial correlations. Therefore, the development of a comprehensive method to
minimize these correlations remains an open challenge. Our solution to this
problem involves simultaneous engineering of the pump beam and crystal. We
achieve purity of single-photon state up to 99 \% without any spatial
filtering. Our findings provide valuable insights into the spatial waveform
generated in structured SPDC crystals, with implications for applications such
as Boson Sampling
Entanglement-enhanced optical gyroscope
Fiber optic gyroscopes (FOG) based on the Sagnac effect are a valuable tool
in sensing and navigation and enable accurate measurements in applications
ranging from spacecraft and aircraft to self-driving vehicles such as
autonomous cars. As with any classical optical sensors, the ultimate
performance of these devices is bounded by the standard quantum limit (SQL).
Quantum-enhanced interferometry allows us to overcome this limit using
non-classical states of light. Here, we report on an entangled-photon gyroscope
that uses path-entangled NOON-states (N=2) to provide phase supersensitivity
beyond the standard-quantum-limit
Spatial mode detection by frequency upconversion
The efficient creation and detection of spatial modes of light has become
topical of late, driven by the need to increase photon-bit-rates in classical
and quantum communications. Such mode creation/detection is traditionally
achieved with tools based on linear optics. Here we put forward a new spatial
mode detection technique based on the nonlinear optical process of
sum-frequency generation. We outline the concept theoretically and demonstrate
it experimentally with intense laser beams carrying orbital angular momentum
and Hermite-Gaussian modes. Finally, we show that the method can be used to
transfer an image from the infrared band to the visible, which implies the
efficient conversion of many spatial modes.Comment: Published version, 4 pages, 5 figure
Generalized description of the spatio-temporal biphoton State in spontaneous parametric down-conversion
Spontaneous parametric down-conversion (SPDC) is a widely used source for
photonic entanglement. Years of focused research have led to a solid
understanding of the process, but a cohesive analytical description of the
paraxial biphoton state has yet to be achieved. We derive a general expression
for the spatio-temporal biphoton state that applies universally across common
experimental settings and correctly describes the non-separability of spatial
and spectral modes. We formulate a criterion on how to decrease the coupling of
the spatial from the spectral degree of freedom by taking into account the Gouy
phase of interacting beams. This work provides new insights into the role of
the Gouy phase in SPDC, and also into the preparation of engineered entangled
states for multidimensional quantum information processing
Phase-stable source of polarization-entangled photons in a linear double-pass configuration
We demonstrate a compact, robust, and highly efficient source of
polarization-entangled photons, based on linear bi-directional down-conversion
in a novel 'folded sandwich' configuration. Bi-directionally pumping a single
periodically poled KTiOPO (ppKTP) crystal with a 405-nm laser diode, we
generate entangled photon pairs at the non-degenerate wavelengths 784 nm
(signal) and 839 nm (idler), and achieve an unprecedented detection rate of
11.8 kcps for 10.4 W of pump power (1.1 million pairs / mW), in a 2.9-nm
bandwidth, while maintaining a very high two-photon entanglement quality, with
a Bell-state fidelity of %
- …