2,753 research outputs found
Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Distributional Operators
In this paper we introduce a generalized Sobolev space by defining a
semi-inner product formulated in terms of a vector distributional operator
consisting of finitely or countably many distributional operators
, which are defined on the dual space of the Schwartz space. The types of
operators we consider include not only differential operators, but also more
general distributional operators such as pseudo-differential operators. We
deduce that a certain appropriate full-space Green function with respect to
now becomes a conditionally positive
definite function. In order to support this claim we ensure that the
distributional adjoint operator of is
well-defined in the distributional sense. Under sufficient conditions, the
native space (reproducing-kernel Hilbert space) associated with the Green
function can be isometrically embedded into or even be isometrically
equivalent to a generalized Sobolev space. As an application, we take linear
combinations of translates of the Green function with possibly added polynomial
terms and construct a multivariate minimum-norm interpolant to data
values sampled from an unknown generalized Sobolev function at data sites
located in some set . We provide several examples, such
as Mat\'ern kernels or Gaussian kernels, that illustrate how many
reproducing-kernel Hilbert spaces of well-known reproducing kernels are
isometrically equivalent to a generalized Sobolev space. These examples further
illustrate how we can rescale the Sobolev spaces by the vector distributional
operator . Introducing the notion of scale as part of the
definition of a generalized Sobolev space may help us to choose the "best"
kernel function for kernel-based approximation methods.Comment: Update version of the publish at Num. Math. closed to Qi Ye's Ph.D.
thesis (\url{http://mypages.iit.edu/~qye3/PhdThesis-2012-AMS-QiYe-IIT.pdf}
The Deformable Mirror Demonstration Mission (DeMi) CubeSat: optomechanical design validation and laboratory calibration
Coronagraphs on future space telescopes will require precise wavefront
correction to detect Earth-like exoplanets near their host stars. High-actuator
count microelectromechanical system (MEMS) deformable mirrors provide wavefront
control with low size, weight, and power. The Deformable Mirror Demonstration
Mission (DeMi) payload will demonstrate a 140 actuator MEMS deformable mirror
(DM) with \SI{5.5}{\micro\meter} maximum stroke. We present the flight
optomechanical design, lab tests of the flight wavefront sensor and wavefront
reconstructor, and simulations of closed-loop control of wavefront aberrations.
We also present the compact flight DM controller, capable of driving up to 192
actuator channels at 0-250V with 14-bit resolution. Two embedded Raspberry Pi 3
compute modules are used for task management and wavefront reconstruction. The
spacecraft is a 6U CubeSat (30 cm x 20 cm x 10 cm) and launch is planned for
2019.Comment: 15 pages, 10 figues. Presented at SPIE Astronomical Telescopes +
Instrumentation, Austin, Texas, US
Solving Support Vector Machines in Reproducing Kernel Banach Spaces with Positive Definite Functions
In this paper we solve support vector machines in reproducing kernel Banach
spaces with reproducing kernels defined on nonsymmetric domains instead of the
traditional methods in reproducing kernel Hilbert spaces. Using the
orthogonality of semi-inner-products, we can obtain the explicit
representations of the dual (normalized-duality-mapping) elements of support
vector machine solutions. In addition, we can introduce the reproduction
property in a generalized native space by Fourier transform techniques such
that it becomes a reproducing kernel Banach space, which can be even embedded
into Sobolev spaces, and its reproducing kernel is set up by the related
positive definite function. The representations of the optimal solutions of
support vector machines (regularized empirical risks) in these reproducing
kernel Banach spaces are formulated explicitly in terms of positive definite
functions, and their finite numbers of coefficients can be computed by fixed
point iteration. We also give some typical examples of reproducing kernel
Banach spaces induced by Mat\'ern functions (Sobolev splines) so that their
support vector machine solutions are well computable as the classical
algorithms. Moreover, each of their reproducing bases includes information from
multiple training data points. The concept of reproducing kernel Banach spaces
offers us a new numerical tool for solving support vector machines.Comment: 26 page
Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter
We investigate the scale-locality of subgrid-scale (SGS) energy flux and
inter-band energy transfers defined by the sharp spectral filter. We show by
rigorous bounds, physical arguments and numerical simulations that the spectral
SGS flux is dominated by local triadic interactions in an extended turbulent
inertial-range. Inter-band energy transfers are also shown to be dominated by
local triads if the spectral bands have constant width on a logarithmic scale.
We disprove in particular an alternative picture of ``local transfer by
nonlocal triads,'' with the advecting wavenumber mode at the energy peak.
Although such triads have the largest transfer rates of all {\it individual}
wavenumber triads, we show rigorously that, due to their restricted number,
they make an asymptotically negligible contribution to energy flux and
log-banded energy transfers at high wavenumbers in the inertial-range. We show
that it is only the aggregate effect of a geometrically increasing number of
local wavenumber triads which can sustain an energy cascade to small scales.
Furthermore, non-local triads are argued to contribute even less to the
space-average energy flux than is implied by our rigorous bounds, because of
additional cancellations from scale-decorrelation effects. We can thus recover
the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by
Kraichnan's ALHDIA and TFM closures. We support our results with numerical data
from a pseudospectral simulation of isotropic turbulence with
phase-shift dealiasing. We conclude that the sharp spectral filter has a firm
theoretical basis for use in large-eddy simulation (LES) modeling of turbulent
flows.Comment: 42 pages, 9 figure
Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum.
Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one\u27s own body
Essential Role for endogenous siRNAs during meiosis in mouse oocytes.
The RNase III enzyme DICER generates both microRNAs (miRNAs) and endogenous short interfering RNAs (endo-siRNAs). Both small RNA species silence gene expression post-transcriptionally in association with the ARGONAUTE (AGO) family of proteins. In mammals, there are four AGO proteins (AGO1-4), of which only AGO2 possesses endonucleolytic activity. siRNAs trigger endonucleolytic cleavage of target mRNAs, mediated by AGO2, whereas miRNAs cause translational repression and mRNA decay through association with any of the four AGO proteins. Dicer deletion in mouse oocytes leads to female infertility due to defects during meiosis I. Because mouse oocytes express both miRNAs and endo-siRNAs, this phenotype could be due to the absence of either class of small RNA, or both. However, we and others demonstrated that miRNA function is suppressed in mouse oocytes, which suggested that endo-siRNAs, not miRNAs, are essential for female meiosis. To determine if this was the case we generated mice that express a catalytically inactive knock-in allele of Ago2 (Ago2ADH) exclusively in oocytes and thereby disrupted the function of siRNAs. Oogenesis and hormonal response are normal in Ago2ADH oocytes, but meiotic maturation is impaired, with severe defects in spindle formation and chromosome alignment that lead to meiotic catastrophe. The transcriptome of these oocytes is widely perturbed and shows a highly significant correlation with the transcriptome of Dicer null and Ago2 null oocytes. Expression of the mouse transcript (MT), the most abundant transposable element in mouse oocytes, is increased. This study reveals that endo-siRNAs are essential during meiosis I in mouse females, demonstrating a role for endo-siRNAs in mammals.This research was supported by the National Institutes of Health Grants HD022681 (to RMS), and R37 GM062534-14 (to GJH), National Human Genome Research Institute 5T32HG000046-13 (to FL) and by a kind gift from Kathryn W. Davis. GJH is an investigator of the Howard Hughes Medical Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from PLoS via http://dx.doi.org/10.1371/journal.pgen.100501
Data-Efficient Policy Selection for Navigation in Partial Maps via Subgoal-Based Abstraction
We present a novel approach for fast and reliable policy selection for
navigation in partial maps. Leveraging the recent learning-augmented
model-based Learning over Subgoals Planning (LSP) abstraction to plan, our
robot reuses data collected during navigation to evaluate how well other
alternative policies could have performed via a procedure we call offline
alt-policy replay. Costs from offline alt-policy replay constrain policy
selection among the LSP-based policies during deployment, allowing for
improvements in convergence speed, cumulative regret and average navigation
cost. With only limited prior knowledge about the nature of unseen
environments, we achieve at least 67% and as much as 96% improvements on
cumulative regret over the baseline bandit approach in our experiments in
simulated maze and office-like environments.Comment: 8 pages, 5 figure
Learning Augmented, Multi-Robot Long-Horizon Navigation in Partially Mapped Environments
We present a novel approach for efficient and reliable goal-directed
long-horizon navigation for a multi-robot team in a structured, unknown
environment by predicting statistics of unknown space. Building on recent work
in learning-augmented model based planning under uncertainty, we introduce a
high-level state and action abstraction that lets us approximate the
challenging Dec-POMDP into a tractable stochastic MDP. Our Multi-Robot Learning
over Subgoals Planner (MR-LSP) guides agents towards coordinated exploration of
regions more likely to reach the unseen goal. We demonstrate improvement in
cost against other multi-robot strategies; in simulated office-like
environments, we show that our approach saves 13.29% (2 robot) and 4.6% (3
robot) average cost versus standard non-learned optimistic planning and a
learning-informed baseline.Comment: 7 pages, 7 figures, ICRA202
Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding
Background: We sought to determine if ripple oscillations (80-120Hz),
detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate
with an enhancement or disruption of verbal episodic memory encoding. Methods:
We defined ripple and spike events in depth iEEG recordings during list
learning in 107 patients with focal epilepsy. We used logistic regression
models (LRMs) to investigate the relationship between the occurrence of ripple
and spike events during word presentation and the odds of successful word
recall following a distractor epoch, and included the seizure onset zone (SOZ)
as a covariate in the LRMs. Results: We detected events during 58,312 word
presentation trials from 7,630 unique electrode sites. The probability of
ripple on spike (RonS) events was increased in the seizure onset zone (SOZ,
p<0.04). In the left temporal neocortex RonS events during word presentation
corresponded with a decrease in the odds ratio (OR) of successful recall,
however this effect only met significance in the SOZ (OR of word recall 0.71,
95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on
oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ
also correlated with decreased odds of successful recall (OR 0.52, 95% CI:
0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred
during word presentation in the left middle temporal gyrus during word
presentation correlated with the most significant decrease in the odds of
successful recall, irrespective of the location of the SOZ (adaptive Hochberg,
p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex
are associated with impaired verbal episodic memory encoding
Active Information Gathering for Long-Horizon Navigation Under Uncertainty by Learning the Value of Information
We address the task of long-horizon navigation in partially mapped
environments for which active gathering of information about faraway unseen
space is essential for good behavior. We present a novel planning strategy
that, at training time, affords tractable computation of the value of
information associated with revealing potentially informative regions of unseen
space, data used to train a graph neural network to predict the goodness of
temporally-extended exploratory actions. Our learning-augmented model-based
planning approach predicts the expected value of information of revealing
unseen space and is capable of using these predictions to actively seek
information and so improve long-horizon navigation. Across two simulated
office-like environments, our planner outperforms competitive learned and
non-learned baseline navigation strategies, achieving improvements of up to
63.76% and 36.68%, demonstrating its capacity to actively seek
performance-critical information.Comment: Submitted at IROS'24. arXiv admin note: text overlap with
arXiv:2307.1450
- …
